
Annual Conference 2023 - IET- Sri Lanka Network 

xciii 

 

 

Critical Assessment of Machine Learning-Based Approaches for Predicting 

System Inertia in Power Systems 

Wijekoon W.M.K.G.V.B. 

Department of Electrical 

and Information Engineering 

University of Ruhuna 

Galle, Sri Lanka 

wmkgvbwijekoon@gmail.com 
 

Abstract—The increasing integration of renewable energy 

sources in power systems has led to declining system inertia, 

making power grid stability a significant challenge. 

Machine learning (ML) techniques have emerged as a 

promising approach to predicting system inertia and 

enhancing grid stability. This paper critically assesses 

various ML-based methods for predicting system inertia in 

power systems. We will discuss the current state of research, 

the challenges and limitations of existing ML approaches, 

and potential future directions for improving prediction 

accuracy and real-world implementation. This paper aims 

to provide researchers and practitioners with a 

comprehensive understanding of ML-based system inertia 

prediction techniques and their applicability in modern 

power systems. 
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I. INTRODUCTION 

Maintaining stability in modern power systems guarantees 

consumers a consistent and dependable electricity supply. 

System inertia, which represents the inherent capability of a 

power system to counteract frequency fluctuations, is vital for 

sustaining power grid stability. The increasing integration of 

renewable energy sources, such as wind and solar, has 

decreased system inertia due to the diminished presence of 

traditional synchronous generators. This reduction presents 

considerable challenges for power grid stability, making the 

precise prediction of system inertia critical for efficient grid 

management and control [1]. 

Machine learning techniques have gained significant attention 

recently as a potential solution for predicting system inertia in 

power systems. These approaches leverage historical and real- 

time data to learn patterns and make predictions, offering a data- 

driven alternative to traditional model-based techniques. This 

paper critically assesses various ML-based approaches for 

predicting system inertia, highlighting their advantages and 

limitations and identifying potential areas for future research. 

II. CURRENT SCENARIO AND CHALLENGES 

A. Introduction 

The power system landscape has significantly changed in recent 

years, driven by the global push towards cleaner and more 

sustainable energy sources. The increasing integration of 

renewable energy resources, such as wind and solar, transforms 

how power grids are operated and managed. While renewable 

energy brings numerous benefits, such as reduced greenhouse 

gas emissions and lower dependency on fossil fuels, it also 

introduces new challenges for power grid stability. One of the 

most pressing issues is the decline in system inertia, which is 

crucial for maintaining frequency stability and grid reliability 

[2]. 

B. Decline in System Inertia 

System inertia refers to the inherent ability of a power system 

to resist changes in frequency. Conventional power systems 

such as coal, gas, nuclear power plants and synchronous 

generators provide most of the system inertia [3]. These 

generators have huge rotating masses, which store kinetic 

energy and help maintain a stable frequency in the grid by 

resisting sudden changes in the power supply or demand. 

On the other hand, renewable energy sources are generally 

connected to the grid through power electronic converters, 

which decouple the electrical energy and the mechanical inertia 

of the generator. As a result, these resources contribute little to 

inertia to the power system. The increasing penetration of 

renewable energy resources displaces conventional 

synchronous generators, leading to a decline in system inertia 

[4]. 

C. Challenges Posed by Renewable Energy Integration 

 
1. Frequency Stability 

 

The decline in system inertia makes power systems more 

susceptible to frequency deviations following disturbances, 

such as load changes or generator outages. Lower system inertia 

results in more significant and faster frequency deviations, 

leading to unsafe system operation and, in extreme cases, 

cascading failures and blackouts [5]. 
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2. Variability and Uncertainty 

 

Renewable energy sources, particularly wind and solar, are 

characterized by high variability and uncertainty in their power 

output. This variability introduces additional challenges for 

maintaining power balance and grid stability, as operators must 

manage the fluctuations in power supply and demand [6]. 

 

3. Limited Predictability 

 

The output of renewable energy sources depends on weather 

conditions and other environmental factors, which are difficult 

to predict accurately. This limited predictability complicates 

forecasting power generation and managing power system 

resources to maintain grid stability [7]. 

 

4. Need for Advanced Control Strategies 

 

The integration of renewable energy sources necessitates the 

development of advanced control strategies to mitigate the 

challenges associated with lower system inertia. These 

strategies may include deploying energy storage systems, 

demand response programs, and advanced grid management 

techniques [2]. 

D. The Need for Accurate System Inertia Prediction 

Accurate prediction of system inertia is essential for maintaining 
power grid stability in increasing renewable energy integration. 
Operators and control systems need precise information on 
system inertia to make informed decisions about grid 
management, such as dispatching generation resources, 
implementing load shedding, or activating frequency response 
services [8]. 

Traditionally, system inertia has been estimated using static 
models based on the characteristics of synchronous generators. 
However, these models may no longer be sufficient for modern 
power systems with high renewable energy penetration, as they 
do not adequately capture the dynamic nature of system inertia 
in such systems. Consequently, there is a growing interest in 
developing data-driven methods, such as machine learning- 
based approaches, for predicting system inertia [9]. 

Machine learning techniques can improve the accuracy and 
timeliness of system inertia prediction by leveraging historical 
and real-time data to learn patterns and make predictions. 
However, the application of machine learning for system inertia 
prediction faces several challenges and limitations, which need 
to be addressed to ensure the effectiveness of these approaches 
in real-world power systems. 

In conclusion, the current power system scenario is 
characterized by increasing renewable energy integration, 
which leads to a decline in system inertia and poses new 
challenges for power grid stability. Accurate prediction of 
system inertia is crucial for managing these challenges and 
ensuring the reliable operation of power systems. [3]. However, 
further research is needed to address these approaches' 
challenges and limitations and develop more accurate and 

robust methods for system inertia prediction in modern power 
systems with high renewable energy penetration. 

E. The Role of Advanced Grid Management Techniques 

1. Energy Storage Systems 

Deploying energy storage systems, such as batteries and 
pumped hydro storage, can help mitigate the challenges 
associated with renewable energy integration by providing 
additional system flexibility and acting as a source of synthetic 
inertia. Energy storage systems can absorb or release energy 
rapidly, helping to maintain the power balance and stabilize the 
grid frequency [10]. 

2. Demand Response Programs 

Demand Response Programs which involve adjusting the 
electricity consumption of participating users in response to grid 
conditions, can provide an additional means of managing power 
system stability. By adjusting demand in real-time, these 
programs can help to balance power supply and demand and 
alleviate the challenges posed by the variability and uncertainty 
of renewable energy sources [11]. 

3. Advanced Grid Management Techniques 

Developing advanced grid management techniques, such as 
wide-area monitoring and control systems, can help operators 
better monitor and manage system inertia and overall grid 
stability. These techniques can provide real-time information on 
system conditions, enabling operators to make more informed 
decisions about the dispatch of generation resources and the 
activation of frequency response services [12]. 

4. Grid-Forming Inverters 

Development and deployment of grid-forming inverters, which 
can provide synthetic inertia and emulate the behavior of 
synchronous generators, offer another potential solution for 
addressing the challenges of renewable energy integration. By 
providing synthetic inertia, grid-forming inverters can help to 
maintain power grid stability in systems with high renewable 
energy penetration [13]. 

E. The Importance of Cross-Disciplinary Collaboration 

Addressing the challenges associated with system inertia 

prediction in power systems with high renewable energy 

penetration requires a cross-disciplinary approach involving 

collaboration between power system engineers, data scientists, 

and machine learning experts. By combining domain 

knowledge with advanced data-driven techniques, researchers 

can develop more accurate and robust methods for predicting 

system inertia and managing power grid stability in the context 

of increasing renewable energy integration [14]. 
 

In conclusion, the increasing integration of renewable energy 

sources in power systems has led to a decline in system inertia, 

posing significant challenges to power grid stability. Accurate 

prediction of system inertia is essential for managing these 

challenges and ensuring the reliable operation of power 

systems. Machine learning-based approaches have the potential 

to enhance system inertia prediction, but further research is 

needed to address the challenges and limitations associated with 
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these approaches. Developing advanced grid management 

techniques and cross-disciplinary collaboration can help 

address these challenges and ensure the reliable operation of 

power systems with high renewable energy penetration. 

III. EXISTING MACHINE LEARNING APPROACHES FOR SYSTEM 

INERTIA PREDICTION 

As power systems evolve and renewable energy penetration 

increases, accurate system inertia prediction becomes more 

critical. Several machine learning (ML) techniques have been 

applied to predict system inertia, each with strengths and 

limitations. This section reviews and critically assesses various 

ML-based techniques for predicting system inertia, such as 

linear regression, support vector machines, neural networks, 

and ensemble methods. 

A. Implementation A - Power System Inertia Estimation 

Using A Residual Neural Network-Based Approach 

 
A prime example of a practical application of neural networks 

in research is the "Power System Inertia Estimation Using a 

Residual Neural Network-Based Approach"[16]. This approach 

employs a residual neural network (ResNet) to predict system 

inertia and addresses the challenges posed by the growing 

integration of non-synchronous generation into power grids. 

System inertia declines as converter-interfaced generators 

replace traditional synchronous generating units, resulting in 

more complex frequency regulation and control challenges. 

Monitoring and quantifying system inertia accurately are 

crucial for implementing corrective actions to maintain power 

system stability. 

The suggested ResNet model utilizes the frequency of the centre 

of inertia and the corresponding calculated frequency change 

rates during a predefined time interval as input data. The model 

accounts for sudden generation outages, load step changes, total 

load demand variations, and equivalent inertia reductions. 

Training the ResNet model on this data can estimate the 

equivalent inertia of a sample power system in real-time, 

enabling operators to take necessary actions to maintain system 

stability. 

The practical implementation of this ResNet-based method 

allows power system operators to comprehend better and 

address the challenges stemming from the increased integration 

of non-synchronous generation. By offering more accurate 

inertia estimates, the ResNet model surpasses conventional 

machine learning techniques, such as Support Vector Machines 

and Random Forests, in predicting system inertia. This 

improved prediction capability enables more effective 

frequency regulation and control, ensuring the reliable and 

stable operation of power systems with high levels of non- 

synchronous generation. 

The ResNet-based model for inertia estimation employs a deep 

neural network architecture specifically designed to handle 

residual connections. Regarding power system inertia 

estimation, the ResNet-based model uses the frequency of the 

centre of inertia and the corresponding calculated frequency 

change rates during a predefined time interval as input. These 

inputs are fed into a series of layers in the neural network, which 

use residual connections to enable the training of deep 

networks. 

The ResNet-based model is trained on data gathered from time- 

domain simulations of power systems under various scenarios, 

such as sudden generation outages and load step changes, 

considering total load demand variations and equivalent inertia 

reductions. During training, the model learns to estimate the 

equivalent inertia based on these inputs and outputs, as shown 

in Fig. 2.[16, Fig 4]. 

Compared to other machine learning models, such as Support 

Vector Regression (SVR) and random forest, ResNet achieves 

higher accuracy in predicting system inertia under low-inertia 

scenarios caused by the integration of converter-interfaced 

generators. This is due to ResNet's ability to capture complex 

nonlinear relationships between input and output variables that 

may be challenging for other models to learn. 

In summary, the ResNet-based model for inertia estimation 

represents a promising approach for maintaining stability in 

power systems with high renewable penetration. Nevertheless, 

neural networks have several disadvantages, including the 

requirement for extensive training data, the risk of overfitting, 

and the complexity of interpreting their internal structure and 

learning relationships. Additionally, training neural networks 

can be computationally intensive, particularly for deep 

architectures with numerous layers and neurons. 

Fig. 1. displays the various layers and operations involved in the 

ResNet-based model for inertia estimation. Here is a summary 

of each layer [16, Fig 4]: 
 

1. Input layer: This layer takes in the frequency of the centre of 

inertia and the corresponding calculated rate of frequency 

change for a predefined time interval. 
 

2. Convolutional layers employ convolutional operations to 

extract meaningful feature maps from the input data. 
 

3. Residual blocks: These blocks use residual connections to 

enable the training of intense networks. Each block contains two 

convolutional layers with batch normalization and ReLU 

activation functions. 
 

4. Global average pooling layer: This layer computes the 

average value across all feature maps in each channel. 
 

5. Fully connected layers: These layers use dense connections 

to map the extracted features to an output value, which is an 

estimate of the equivalent inertia value, which is an estimate of 

the equivalent inertia. 
 

6. Output layer: This layer produces the final output value, 

representing the estimated equivalent inertia. 
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predictions to enable power system operators to take preemptive 

measures against significant frequency fluctuations. 

 

The five machine learning approaches assessed in this study 

include linear regression (LR), gradient boosting (GB), support 

vector regression (SVR), artificial neural networks (ANN), and 

XGBoost. The comparison utilizes two separate datasets: the 

unit generation dataset and the combined system inertia and 

headroom dataset, both produced by running PSS/E on the 

Western Electricity Coordinating Council 240-bus system. 

 
 

 
 

 

 

 

 

 

 

Fig. 1 . Graphical flow chart of the proposed model architecture 

 

Overall, this architecture is designed to capture complex 

nonlinear relationships between input and output variables that 

may be difficult for other models to learn, making it a promising 

approach for maintaining stability in power systems with high 

renewable penetration. 

B. Implementation B - A Comparison of Machine Learning 

Methods for Frequency Nadir Estimation in Power 

Systems 

 
The study aims to evaluate five distinct machine learning 

techniques for estimating frequency nadir in power systems 

[17], emphasizing the necessity for precise frequency nadir 

Fig. 2 . Error distribution of UGD (top) and TIH (bottom) testing of 

proposed model architectures 

 

This research presents the error distribution for two different 

datasets: the unit generation dataset (UGD) and the system total 

inertia and headroom dataset (TIH). The error distribution is 

shown in Figure 2, with the UGD on top and the TIH on the 

bottom [17, Fig 5]. 

 

This research determines that all the machine learning 

techniques can achieve high performance in predicting 

frequency nadir, but a comprehensive comparison has yet to be 

carried out. As a result, this study addresses this gap by 

proposing two data preprocessing methods and comparing the 

five machine learning techniques. 

 

After thorough simulations utilizing the Multi-timescale 

Integrated Dynamic and Scheduling (MIDAS) toolbox created 

by the National Renewable Energy Laboratory, the research 

determines that XGBoost outperforms other techniques in both 

accuracy and computational effectiveness. Nevertheless, it is 

essential to acknowledge that each method has advantages and 
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disadvantages contingent upon the particular application 

context. 

 

Gradient boosting achieves the best error distribution in both 

datasets, followed closely by XGBoost. In contrast, due to their 

high variance distribution, artificial neural networks (ANN) and 

support vector regression (SVR) are unsuitable for this work. 

Additionally, both methods perform worse in the TIH testing 

dataset. 
 

It is worth noting that linear regression ranks third in both 

datasets, indicating its potential as a simple yet effective method 

for frequency nadir estimation in power systems. Overall, this 

error distribution analysis provides valuable insights into the 

performance of different machine learning methods for 

frequency nadir prediction. 

 

In summary, this research study offers a robust understanding 

of employing machine learning methods for estimating 

frequency nadir in power systems. Comparing these five 

approaches can help power system operators choose an 

appropriate method based on their needs and constraints. 

Moreover, this research opens new opportunities to explore 

machine-learning techniques in renewable energy systems. 

 

In conclusion, existing ML approaches for system inertia 

prediction, such as linear regression (LR), gradient boosting 

(GB), support vector regression (SVR), artificial neural network 

(ANN), and XGBoost and ResNet, offer varying levels of 

accuracy and complexity. Each technique has its strengths and 

limitations. Selecting the most appropriate method for a given 

power system scenario depends on factors such as data 

availability, computational resources, and the desired level of 

prediction accuracy. Further research is needed to develop more 

advanced ML techniques that can overcome the limitations of 

existing approaches and provide accurate and robust predictions of 

system inertia in power systems with high renewable energy 

penetration. 

IV. CHALLENGES AND LIMITATIONS OF MACHINE LEARNING- 

BASED APPROACHES 

While machine learning (ML)-based approaches have 

demonstrated their potential in predicting system inertia in 

power systems, some several challenges and limitations need to 

be addressed to ensure their successful real-world 

implementation. This section discusses the main challenges and 

limitations, including data requirements, model interpretability, 

and real-world implementation challenges. 

A. Data Requirements 

One of the primary challenges in applying ML algorithms for 

predicting system inertia is obtaining sufficient high-quality 

data. Power systems are complex, and the relationships between 

system inertia and various factors, such as generation mix, load 

levels, and network topology, can be highly nonlinear and time- 

varying. To capture these relationships, ML models require 

large amounts of historical data, which may not always be 

readily available or accessible. 

 

Moreover, data quality is critical for the success of ML models. 

Only accurate or complete data can lead to good model 

performance or misleading results. For instance, missing or 

incorrect measurements of generator speeds, loads, or network 

parameters can lead to inaccurate estimates of system inertia. 

Furthermore, outliers or noise in the data can adversely impact 

the model's ability to learn the underlying patterns and 

relationships. 
 

Data preprocessing and feature engineering are essential steps 

in addressing these data-related challenges. Preprocessing 

techniques, such as data cleaning, imputation of missing values, 

and outlier detection, can help improve data quality. Feature 

engineering, on the other hand, involves selecting relevant input 

features and transforming them into a format that can be 

effectively used by ML algorithms [18]. This step is crucial for 

capturing the complex relationships between input features and 

system inertia and can significantly impact the performance of 

the ML models. 

B. Model Interpretability 

Another important challenge in applying ML algorithms for 

system inertia prediction is the need for more interpretability of 

some models, particularly complex ones such as deep neural 

networks [19]. Interpretability is important in the context of 

power systems. It can help operators and engineers understand 

the underlying relationships between input features and system 

inertia and provide insights into the factors affecting system 

stability. 

While simpler models, such as linear regression and support 

vector machines with linear kernels, can provide interpretable 

predictions, their ability to capture complex, nonlinear 

relationships is limited. On the other hand, complex models, 

such as neural networks and ensemble methods, can provide 

more accurate predictions but are often considered "black 

boxes" due to their lack of interpretability. 
 

Recent research has focused on developing techniques for 

improving the interpretability of complex ML models, such as 

layer-wise relevance propagation and local interpretable model- 

agnostic explanations (LIME). These techniques aim to provide 

insights into the inner workings of the models and help explain 

their predictions. However, further research is needed to 

develop more effective interpretability techniques and to assess 

their applicability to system inertia prediction. 
 

C. Real-World Implementation Challenges 

The successful implementation of ML-based system inertia 

prediction models in real-world power systems poses several 

challenges. One of these challenges is the integration of ML 

models with existing power system monitoring and control 

infrastructure. This requires the development of efficient 

algorithms and communication protocols to ensure that the ML 
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models can effectively interact with existing systems and 

provide timely and accurate predictions. 

 

Another challenge is the need to adapt ML models to the 

dynamic nature of power systems [20]. Power system 

conditions, such as generation mix and network topology, can 

change rapidly due to renewable energy integration, demand 

fluctuations, and equipment outages. ML models must adapt to 

these changes and provide accurate predictions under varying 

system conditions. This may involve updating the models with 

new data or fine-tuning their parameters in real time. 
 

Furthermore, the robustness of ML models to uncertainties and 

disturbances in power systems is a significant concern. 

Power systems are subject to uncertainties, such as forecasting 

errors in renewable generation and load and disturbances, such 

as equipment failures or weather events. ML models must be 

robust and resilient to these uncertainties and disturbances to 

provide accurate and reliable system inertia predictions. This 

may involve incorporating uncertainty quantification 

techniques, such as Bayesian or ensemble learning, into the ML 

models to account for power systems' inherent variability and 

unpredictability. 
 

D. Scalability and Computational Complexity 

ML models' scalability and computational complexity are 

significant challenges in system inertia prediction. Power 

systems are growing in size and complexity due to integrating 

distributed energy resources, such as solar photovoltaics, wind 

turbines, and energy storage systems [21]. As a result, the 

dimensionality of the input data and the complexity of the 

relationships between input features and system inertia are 

increasing. 

 

ML models must scale effectively to handle large-scale power 

systems and provide timely predictions. This may require the 

development of more efficient algorithms and parallel 

processing techniques to reduce the computational complexity 

of the models. Additionally, hardware accelerators, such as 

graphics processing units (GPUs) or field-programmable gate 

arrays (FPGAs), can help improve the computational efficiency 

of ML models and enable their real-time implementation in 

power systems. 

 
In conclusion, while ML-based approaches have shown promise 

in predicting system inertia in power systems, several 

challenges and limitations must be addressed to ensure their 

successful real-world implementation. These include data 

requirements, model interpretability, real-worldimplementation 

challenges, and scalability and computational complexity. 

Further research is needed to develop more effective solutions 

to these challenges and to evaluate their impact on the 

performance and reliability of ML-based system inertia 

prediction models. 

V. FUTURE SCOPE AND POTENTIAL IMPROVEMENTS 

This section discusses potential areas for future research and 

improvements in ML-based system inertia prediction. These 

areas include incorporating domain knowledge, addressing data 

quality and availability issues, and developing more 

interpretable and robust models. 

A. Incorporating Domain Knowledge 

One of the key challenges in applying ML techniques to predict 

system inertia is the need for domain knowledge incorporated 

into the models. While data-driven approaches have shown 

promising results, incorporating domain knowledge can further 

enhance the performance and generalizability of ML models. 

By leveraging the knowledge of power system experts and 

engineers, future research can explore hybrid approaches that 

combine ML techniques with physics-based models to develop 

more accurate and reliable predictions. 

 
For example, deep learning architectures that integrate domain- 

specific features and constraints, such as convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs), can 

be tailored better to capture the dynamics and dependencies in 

power systems. Researchers can also investigate using 

knowledge graphs and other structured representations of power 

system knowledge to guide the learning process and improve 

the interpretability of ML models. 

 
B. Addressing Data Quality and Availability Issues 

 
Data quality and availability play a crucial role in the 

performance of ML models for system inertia prediction. To 

ensure the effectiveness of ML-based approaches, future 

research should address challenges related to data collection, 

preprocessing, and integration. 

 

Data collection can be improved by developing advanced 

sensors and measurement devices that provide more accurate 

and timely information about the state of power systems. 

Additionally, researchers can explore methods for data 

augmentation, such as generating synthetic data or using 

transfer learning techniques, to alleviate the issue of limited data 

availability [22]. 
 

Preprocessing techniques can also be improved to handle 

missing data, outliers, and other data quality issues better. 

Researchers can investigate methods for imputing missing 

values, detecting and correcting errors, and normalizing data to 

ensure consistent and reliable inputs for ML models. 

 

Finally, data integration methods can be developed to combine 

data from multiple sources, such as phasor measurement units 

(PMUs), supervisory control and data acquisition (SCADA) 

systems, and other sensors, to provide a more comprehensive 

view of the power system and facilitate more accurate 

predictions [23]. 
\ 
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C. Developing More Interpretable and Robust Models 

 
Interpretability and robustness are essential in implementing 

ML models for system inertia prediction. Future research 

should focus on developing accurate and easily understandable 

models by power system engineers and resilient to uncertainties 

and disturbances in power systems. 

Researchers can investigate the use of explainable AI (XAI) 

techniques, such as feature importance analysis, decision tree- 

based methods, and visualization tools, to provide insights into 

the relationships between input features and predicted system 

inertia. This can help power system experts validate and refine 

the models, leading to better predictions and improved trust in 

the ML-based approach. 
 

Developing robust ML models that can handle uncertainties and 

disturbances in power systems is also an important area of 

research. Techniques for uncertainty quantification, such as 

Bayesian approaches and Monte Carlo methods, can be 

explored to understand better and manage the impact of 

uncertainties on model predictions [24]. Researchers can also 

investigate methods for improving model robustness, such as 

adversarial training and regularization techniques, to ensure the 

stability and reliability of ML-based system inertia predictions 

in the presence of disturbances and noise. 
 

In conclusion, the future scope and potential improvements in 

ML-based system inertia prediction are vast, and addressing 

these challenges can lead to significant advancements in power 

systems. By incorporating domain knowledge, addressing data 

quality and availability issues, and developing more 

interpretable and robust models, researchers can revolutionize 

power grid stability and facilitate the efficient integration of 

renewable energy resources. 

 
CONCLUSION 

This paper provided a comprehensive review and critical 

assessment of the existing machine learning (ML) approaches 

for predicting system inertia in power systems. ML-based 

techniques have shown great potential in enhancing the stability 

of power grids by accurately predicting system inertia. 

However, the integration of renewable energy sources and the 

evolving nature of power systems have introduced new 

challenges that need to be addressed to ensure the reliability and 

effectiveness of these techniques. 

 

The graphical abstract has been created based on the research 

pipeline as shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 . Graphical flow chart of the overall research 

 

Several limitations and challenges in current ML-based 

approaches were identified, including the need for extensive 

and high-quality data sets, model interpretability issues, and 

real-world implementation challenges. Developing strategies 

for overcoming these challenges is essential, as they may hinder 

the progress of ML-based techniques in power systems. 

Furthermore, future research should incorporate domain 

knowledge, address data quality and availability issues, and 

develop more interpretable and robust models. 

 
To conclude, despite the promise of ML-based approaches for 

predicting system inertia in power systems, several challenges 

and limitations must be addressed. By overcoming these 

obstacles and focusing on future research, the applicability and 

accuracy of these techniques can be significantly improved, 

ultimately contributing to the stability and reliability of modern 

power systems. The findings of this paper can serve as a 

valuable guide for researchers and practitioners alike, helping 
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them make informed decisions when selecting and 

implementing ML-based system inertia prediction techniques. 
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