

Annual Conference 2018 - IET- Sri Lanka Network

94

Native Cloud Support for Running WSO2 Middleware on

Microsoft Azure

Rathnayake O. N 1, Dumendra W.A.S 2, Jayaratne V.V.M 3, Barthelot A.J 4, Shashika Lokuliyana5

Department of Computer Systems and Networking, Sri Lanka Institute of Information

Technology (SLIIT), Malabe, Sri Lanka.
1 osuranew@gmail.com, 2 sahan.wickramaarachchi@gmail.com , 3 vish120292@gmail.com ,

4 allan.barthelot@gmail.com, 5shashika.l@sliit.lk

Abstract - WSO2 Carbon is the core platform on which WSO2

middleware products are built. WSO2 products can be deployed

in on premise servers as well as in cloud environments such as

Microsoft Azure and Amazon Web Services (AWS). Apache

based WSO2 products uses membership schemes to manage the

members in their clusters. Addition and removal of members in a

cluster and maintaining the consistency of the members list is the

main objective of a membership scheme. Well-known address

based membership scheme and multicast membership schemes

are in-built membership schemes supported by Apache axis2,

which are most suitable for in house server clusters. Apart from

them, Kubernetes and AWS membership schemes are specially

developed for cloud based deployments, for the cloud platforms

Google Kubernetes and AWS respectively. The authors focuses

on deployment of WSO2 product clusters in Microsoft Azure

including a carbon membership scheme that uses Azure native

features to automatically discover members. This new

membership scheme guarantees that members in a WSO2

product cluster is managed smoothly. In addition, the authors

focus on development of load balancing, auto healing and

centralized logging using native features provided by Azure.

Keywords – Membership Scheme, WSO2 Custer, Azure REST

API, Auto Discovery, Clustering in Azure.

I. INTRODUCTION

 WSO2 Carbon is an open source platform developed for

Enterprise level WSO2 middleware products. The WSO2

Carbon core platform features a set of middleware components

that together produce capabilities such as security, clustering,

logging, statistics, management and more. These are basic

features offered by all WSO2 products developed on top of the

base platform [1]. The main focus of this research is the

membership scheme which facilitates auto discovery of

members in a WSO2 cluster deployed in Azure. Apart from

that, dynamic load balancing, auto healing, centralized logging

and are also provided as sub components.

A. Membership Scheme (auto discovery)

 WSO2 products are based on Apache Axis2 web services

framework. Hence WSO2 products use features inherited and

derived from Apache Axis2. In Apache Axis2, membership

schemes are used to manage the members in a cluster.

Managing members includes notification of existing members

when a new member is added and removed. Furthermore the

membership scheme holds a list of members in a given cluster.

These membership schemes are pluggable thus provides the

flexibility to add a membership scheme of choice. By default,

there are two membership schemes, well-known address based

(WKA) membership scheme and multicast membership

scheme, shipped with any WSO2 product. These in-built

membership schemes can be deployed in an on premise server

cluster. In addition, AWS membership scheme and Kubernetes

membership scheme are developed specially in order to work

in respective cloud environments. Even though WKA and

multicast membership schemes work perfectly fine in those

cloud platforms, yet the customized membership schemes

provides feature-rich and efficient functionalities. Apart from

that, such built-in membership schemes are of limited features

and not fully flexible and very importantly do not make use of

native cloud support. For an example multicast membership

scheme can be used only in an environment where multicasting

is enabled.

 Carbon membership scheme for Azure is a fully functioning

membership scheme which uses native cloud support provided

by Azure. The main focus of this membership scheme is auto

discovery of members, which is not supported by any of the

existing built-in membership schemes. Unlike built-in

membership schemes, auto discovery feature majorly reduces

the configuration time by allowing the cluster to get its own list

of members by itself. Apart from that, this new membership

scheme lets users to make dynamic changes to the IP addresses

of members.

B. Dynamic Load Balancing

 Azure features consist of the option called Internet facing

load balancer. It maps the public IP and the port number of

incoming traffic to the private IP address and port number of

Annual Conference 2018 - IET- Sri Lanka Network

95

the virtual machine set. Authors have configured the load

balancing rules to use round robin method as it is one of the

best and the simplest methods for distributing client requests

across a groups of virtual machines [2]. Round Robin method

does not always result the most accurate or most efficient

distribution of traffic, but to implement more complex

algorithm, the algorithm itself will consume a considerable

amount of resources. Hence authors have decided to go ahead

with round robin method. Previously, Load balancing part was

handled by the software called Nginx [3]. Nginx has few issues

such as, process spawning, concurrent request handling,

Decoupling actual work requests etc. Authors have used the

native functions and APIs in Azure platform to overcome this

issue, since the underlying infrastructure is catered from the

Azure Platform itself.

C. Centralized Logging

 Microsoft Azure provides an interface for centralized

logging. All it requires is the file path of the location of log

files in local storage. However, as the requirement specified,

there is no actual way of collecting or manipulating log files

according to any sort of custom requirement. Log4J provides a

lot of options for consolidating system logs into specific

locations, according to log level, and similar filtering.

However, on its own, it cannot solve this problem. A solution

was devised to use a script and Cron mechanism to consolidate

all logs to a single, isolated location that could be later

accessed.

D. Auto Healing

 Auto healing refers to getting a downed server or a virtual

machine back on the business. It is happened in a few steps,

firstly it checks for the health status of the interested server or

the virtual machine and then according to the result returned it

takes proceed the next step. If it is up and running then no

action is taken otherwise it will be restarted. Cron tab and shell

scripts are used in the implementation. Health checking of the

servers and virtual machines are done in periods of 10 minutes

and that duration can be adjusted as per the requirement of the

end user.

II. LITERATURE SURVEY

 Research carried out on scalability and multi tenancy of

WSO2 products has laid the ground work for this research.

Scalability is an important requirement in distributed

environments and solutions to provide scalable systems can be

developed at different levels [4] [5]. [6] Provide an overview

of how cloud computing can support the development of

scalable applications. In [7], they have researched on how

scalability can be done on WSO2 carbon middleware. As

explained in [7], most of the PaaS vendors including WSO2,

deploy a single platform supporting clustering and is shared by

all tenants. Multiple instances of WSO2 products such as

WSO2 application server, WSO2 Enterprise Service Bus can

be deployed on different machines across the cluster.

Therefore this supports a scalability solution that guarantees

the performance levels of the platform by dynamically scaling

out/scaling down the resources assigned to the cluster. This

functionality is achieved by adding or removing servers and

many other resources to the cluster. Furthermore this

mechanism manages shared resources preserving security and

isolation among tenants. In addition, it implements a set of

functionalities including load balancing, PaaS monitoring, and

elastic auto-scaling. Besides that this mechanism provides high

resource utilization, since the machines in the cluster are

shared among different tenants, and some scalability, as system

resources can be incrementally extended. Finally, it promises

high availability and reliability due to the introduced

redundancy.

 Multi-tenancy implies that applications should be designed

so that they maximize the resource sharing between multiple

consumers. Thus, service providers are able to maximize the

resource utilization and as a result reduce their servicing costs

per customer [8]. Multi-tenancy is a main prerequisite to

enable other very important characteristics of applications or

services like isolation, configurability and scalability [9], [10],

and [11]. In [12] the authors introduce an architecture for a

multi-tenant middleware platform, called WSO2 Carbon that

enables users to run their services and furthermore provides

them an environment to build multi-tenant applications. WSO2

Carbon provides multi-tenancy support by appropriate

adaptations to its underlying execution engine Apache Axis2.

On top of WSO2 Carbon they support multi-tenancy at the

ESB and SCE [13] level.

 In the membership scheme perspective, there are few

membership schemes already in use. Their capabilities and

limitations are illustrated in table 1.

TABLE I. COMPARISON OF EXISTING MEMBERSHIP SCHEMES

Multicast WKA AWS

All nodes

should be in the

same subnet

Nodes can be in

different networks

Amazon EC2

nodes

All nodes

should be in the

same multicast

domain

No multicasting

requirement

No multicasting

requirement

Multicasting

should not be

blocked

No multicasting

requirement

No multicasting

requirement

No fixed IP

addresses or

hosts required

At least one well-

known IP address or

host required

No fixed IP

addresses or

hosts required

Failure of any

member does

not affect

New members can

join with some

WKA nodes down,

Failure of any

member does

not affect

Annual Conference 2018 - IET- Sri Lanka Network

96

membership

discovery

but not if all WKA

nodes are down

membership

discovery

Does not work

on IaaSs such as

Amazon EC2

IaaS-friendly Works on

Amazon EC2

No WKA

requirement

Requires keep-alive,

elastic IPs, or some

other mechanism for

re-mapping IP

addresses of WK

members in cases of

failure

No WKA

requirement

 By conducting a basic analysis of the prevailing

membership schemes which can be used in Azure could

platform, some features were identified, which can be

improved in order to increase the efficiency and performance.

The main identified problem is that, well-known address based

and multicast membership schemes are fully independent from

the underlying Azure cloud platform, as they are generic

membership schemes. Making use of native cloud support

provided by Azure, will improve the efficiency and

performance of the membership scheme.

In addition to the efficiency and performance parameters, it

can also benefit the improvements mentioned in below table.

Apart from that, it also can be customized to make use of native

special features provided by Azure. Table 2 shows issues that

were identified in existing membership schemes.

TABLE II. ISSUES IN EXISTING MEMBERSHIP SCHEMES

Issue Description

Dynamic IP Address

changes

Well-known address based

or multicast membership

schemes do not provide

features for IP addresses to

be changed or assigned

dynamically. If an IP

address of a member was

changed, it has to be

changed accordingly in the

other members as well.

Hassle in configuration IP addresses of the

members should be

configured manually

Multicast issues AWS and Azure restrict

multitasking.

 Apart from above issues, the authors have found some

other issues existing in WKA when it is deployed in Azure,

which definitely need some alteration. Those issues are

illustrated in following scenarios.

Scenario 1: Well-known node instance being shut

down.

 If the well-known node goes down, other nodes will

be treated as individual nodes running in separate clusters. If

this happens, the whole clustering concept would be broken

and re-implementation will be needed.

Solution: This issue can be overcome by introducing more

well-known members in the cluster. Even in this solution,

many efficiency issues can be seen. Being one of them,

having many well-known nodes in places makes the

production costly, that is, it needs more resources and

configuration.

Scenario 2: Well-known node VM rebooting

 If the VM in which the membership instance is

deployed gets rebooted, then the rest of the nodes will lose

the members list and will act as in different clusters.

Solution: As the previous scenario, this issue also can be

overcome by introducing more well-known members in the

cluster. Even in this solution, many more efficiency issues

can be seen. Being one of them, having many well-known

nodes in places makes the production costly, that is, it needs

more resources and configuration.

III. METHODOLOGY

A. Membership Scheme

 Membership scheme is a pluggable software component

which runs with any product that is based upon WSO2 Carbon

middleware. As a pre-configuration, user has to create either a

network security group or a tag and assign respective virtual

machines to that. This network security groups or tag is used

to identify a group of virtual machines. Thereafter an API call

is made to Azure REST API, with the network security group

name or tag, to retrieve the list of virtual machines (refer figure

1). In the response, a list of network interface names can be

seen. Afterwards another few API calls are made to get the IP

addresses associated with each network interface name (refer

figure 2). In this step. Number of API calls made is the number

of network interface names retrieved in the previous API call

and ultimately that is the number of virtual machines (members

or nodes) in the cluster. Once the list of IP addresses is

obtained, it is updated with the Hazelcast configuration

instance. Hazelcast configuration instance will then be

distributed among members and that is done by Carbon

middleware.

 Once the above scenario is completed, the WSO2 product

in interest can be started. While it is starting up, log messages

Annual Conference 2018 - IET- Sri Lanka Network

97

can be seen as and when members added, joined and left the

cluster. Table 3 shows the detailed description of all the log

messages issued by the membership scheme.

TABLE III. LOG MESSAGES

Log message Implication

Member added This log message can be

seen when the virtual

machine where the

WSO2 product installed

is added to the cluster.

Member joined This log message can be

seen when the instance of

a WSO2 product is

started up

Member left This log message can be

seen when an instance

was shut down

Figure 8. Flow chart of network interfaces retrieval

Figure 9. Flow chart of IP address retrieval

B. Dynamic Load Balancing

 Azure platform supports heterogeneous workloads

consisting of different requests and transaction types. Authors

concentration is on the performance, As the dynamic load

balancing mechanism is handled in software platform level.

There is an entity called backend Azure platform, and all the

VMs are attached and managed by the backend pool. Once it

is configured to handle the load balancing in Azure platform,

it uses the Round Robin, as authors have already defined.

Figure 10. Overview of load balancing

Ultimately what happens is HTTP redirection to the particular

set of VMs (refer figure3). Backend is the centralized

dispatcher and it receives all incoming HTTP requests and

Annual Conference 2018 - IET- Sri Lanka Network

98

distributes among the VM nodes. Unlike most dispatcher based

solution, the HTTP redirection does not require additional

modifications of IP addresses, it accepts all the requests from

the public IP and redirect it to the private IP addresses (refere

figure 4).

Figure 11. High Level Network Diagram

C. Centralized Logging

 Logging is implemented using Log4J. Logs at each level

are put into different files, and can be configured

independently. The solution was devised to use a script and

cron mechanism to consolidate all logs to a single, isolated

location that could be later accessed (refer figure 5).

Figure 12. Block diagram of centralized logging functionality

A script is written to,

• Identify the most recent log file (log file with the

date of the previous day)

• Copy this file to a pre defined central location on

another server

The copy operation is done using a ssh key mechanism so

that the remote location can be accessed securely.

Figure 13. Bash script for log consolidating

This script (figure 6) is then put in a cron job that will execute

once a day, at a time after a new log file is created, and the old

one is archived, with the date appended to the file name. This

file will have the date of the previous day. This will make sure

that the script will copy the right file. With all these functions

implemented and deployed, centralized logging functions

successfully.

D. Auto Healing

Auto healing is achieved in 2 approaches.

• Service level

• Virtual machine level

 In the service level auto healing, an applications running

inside the virtual machine is healed in case of a sudden service

shut down and is handled by a shell script with a cron tab.

Periodic checks of the state of the application will ensure that

its downtime is minimal. Parameters required to run this shell

script is the Service Name (name of the WSO2 product with

location). Once the Service name is given, shell script will

periodically check for any running instances of the application

and restart if it is down.

 In virtual machine level auto healing, status of the virtual

machine is examoined by using Azure REST API calls [14].

The response would contain the status of the virtual machine is

interest. Then if the virtual machine is powered down, using

another Azure REST API call [15], it can be started again.

IV. RESULTS AND DISCUSSION

 Number of results were taken to test the performance of new

membership scheme. First one being, time taken to start the

server were obtained from a server having WKA membership

scheme and the new membership scheme for Azure. In the

setup 6 virtual machines were deployed as 2 clusters each

having 3 virtual machines in total. First cluster had WSO2

Application Servers installed in each of its virtual machines

along with the WKA membership scheme. Second cluster had

Annual Conference 2018 - IET- Sri Lanka Network

99

the same setup with new membership scheme plugged in.

Authors started up each server 5 times in order to take an

average out of them. There were few other constraints and

dependencies that the time taken for a server to start up relied

upon [16].

• Database connectivity

• Used memory

• Available memory

• CPU usage

• Internet speed

 Countermeasures were taken to make sure that above

constraints were unchanged from one result to another. Each

time the virtual machines having the server installed were

rebooted to gain a trustworthy constant value for used memory,

available memory and CPU usage. Internet speed was beyond

authors control as it is provided by the Azure platform.

Therefore an assumption was made that all the virtual

machines have the same internet speed as they are in the same

region of Azure and sharing the same Azure subscription.

Database connectivity made from each virtual machine to the

virtual machine which has the MySQL instance were reset

each time. Following are the results

1. Servers with WKA membership scheme

TABLE IV. TIME TAKEN FOR A SERVER STARTUP FOR WKA

MEMBERSHIP SCHEME

Occurrence no Time taken to start up (seconds)

VM1 VM2 VM3

01 130.8 123.6 126

02 131.4 130.2 132.6

03 120.6 125.4 129.0

04 123.6 127.2 127.2

05 129.0 129.6 120.0
Mean values for each virtual machine across the 5

occurrences were then calculated as follows,

Virtual machine 1 = 127.08 seconds

Virtual machine 2 = 127.2 seconds

Virtual machine 3 = 126.96 seconds

Mean value out of all the virtual machines = 127.08 seconds

2. Server with the new membership scheme for Azure

TABLE V. TIME TAKEN FOR A SERVER STARTUP FOR AZURE

MEMBERSHIP SCHEME

Occurrence no Time taken to start up (seconds)

VM1 VM2 VM3

01 56 56 55

02 58 56 61

03 61 59 58

04 55 69 64

05 60 62 57
Mean values for each virtual machine across the 5

occurrences were then calculated as follows,

Virtual machine 1 = 58.0 seconds

Virtual machine 2 = 60.4 seconds

Virtual machine 3 = 59.0 seconds

Mean value out of all the virtual machines = 59.1 seconds

 When compared the duration of time in second that took for

WKA membership scheme to start up with that of the new

membership scheme, a short duration of time has been taken

by the new membership scheme.

 Authors have tested the load balancing function by firing

500 HTTP requests as in Nginx Testing [17] , Nginx has been

fired 500 HTTP requests. Below are the results of turnaround

time for both the tests. Since the HTTP requests is handled

from the hardware layer, this solution has been able to perform

better than the existing Nginx load balancer.

Figure 14. Dynamic load balancing test results

V. CONCLUSION AND FUTURE WORK

 A few membership schemes are available for the

management of members in a cluster. Even though it is the

case, there was a lack of a membership scheme that uses Azure

native cloud support. This new carbon membership scheme for

Azure has overcome a few issues existed and introduce new

features. Especially in case where well-known member goes

down, WKA membership scheme has a very limited capability

to get the cluster working back to normal condition. Azure

membership scheme has eliminated the need of well-known

members or special members and so is the problem.

 Auto discovery of members is a new feature that enables the

user to add and remove members without making changes to

the other members. Network security groups and tags are used

0

50

100

150

200

250

50 66 75 80 90 95 98 99 100

Turnaround Time

Nginx Azure LB

Annual Conference 2018 - IET- Sri Lanka Network

100

for the grouping purpose, in the implementation of this feature.

Performance results have shown that a server with Azure

membership scheme take a shorter startup time than that of a

server which uses WKA membership scheme.

 The coding of this membership scheme needs a touch of

code optimization techniques in order to achieve even better

performance results. Apart from that for the communication

purpose with the Azure API, basic http requests has been used.

Implementation of proper secured communication method or

an API query system can be stated as future work. In addition,

this membership scheme is suitable only for Azure Resource

Manager (ARM) deployments. Hence another compatible

version of this membership scheme for Azure Classic

deployments also can be mentioned as future work.

ACKNOWLEDGEMENT

 Authors would like to express their sincere gratitude to Mrs.

Shashika Lokuliyana and Mr. Anuradha Jayakody for being

the supervisor and co-supervisor, for their kind advices and

guidance in different perspectives and directing them

throughout the research. Authors would like to convey a

special thanks to Mr. Lakmal Rupasinghe for highlighting the

availability of the Native Cloud Support for Running WSO2

Middleware on Microsoft Azure. Lecturer in charge, Mr.

Jayantha Amararachchi and other lecturers who provided their

immense support also acknowledged. Last but not least, many

thanks to the family and friends of the authors for their support

over the months.

REFERENCES

[1] "WSO2 platform," WSO2, 2016. [Online]. Available:

http://wso2.com/platform. [Accessed 03 October 2016].

[2] S. Akl, "The Design and Analysis of Parallel Algorithms," Prentice-

Hall, Englewood, 1989.

[3] "Nginx," Nginx, 2016. [Online]. Available: https://www.nginx.com/.

[Accessed 30 September 2016].

[4] M. Pati˜no-Martinez, B. Kemme, F. Perez-Sorrosal, and D. Serrano,

"A system of architectural patterns scalable, consistent and highly

available multi-tier serviceoriented infrastructures," Architecting

Dependable Systems, vol. LNCS 5835, 2009.

[5] J. S¨oderlund, "Scalability patterns and an interesting story," August

2010. [Online]. Available:

http://thebigsoftwareblog.blogspot.com/2010/scalability-

fundamentals-and.html,. [Accessed 05 2016].

[6] J. Caceres, L. Vaquero, A. P. L. Rodero-Merino, and J. Hierro,,

"Service scalability over the cloud," Handbook of Cloud Computing,

2010.

[7] Claudio A. Ardagna, Ernesto Damiani, Fulvio Frati, and Davide

Rebeccani, "Scalability Patterns for Platform-as-a-Service," in IEEE

Fifth International Conference on Cloud Computing, 2012.

[8] S. Strauch, V. Andrikopoulos, F. Leymann and D. Muhler, "ESBMT:

Enabling Multi-Tenancy in Enterprise Service Buses," Proceedings

of CloudCom, pp. 456-463, 2012.

[9] F. Chong and G. Carraro, "Architecture Strategies for Catching the

Long Tail," 2006. [Online]. Available: http://msdn.microsoft.com/en-

us/library/aa479069.aspx. [Accessed 04 2016].

[10] C. M. a. S. K. R. Krebs, "Architectural Concerns in Multitenant SaaS

Applications," CLOSER, pp. 426-431, 2012.

[11] E. T. a. W. J. S. Walraven, "A Middleware Layer for Flexible and

Cost-Efficient Multi-tenant Applications," Springer, pp. 370-389,

2011.

[12] A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwardana, D.

Leelaratne and S. Weerawarana, P. Fremantle, "“Multi-tenant SOA

Middleware for Cloud Computing,” in Cloud computing (cloud)," in

ieee 3rd international conference on cloud, 2010.

[13] S. P. I. K. a. S. W. M. Pathirage, "A Multi-tenant Architecture for

Business Process Executions," in IEEE International Conference on,

2011, 2011.

[14] Microsoft Corperation, "Microsoft Azure," Microsoft Corperation,

2016. [Online]. Available: https://msdn.microsoft.com/en-

us/library/azure/mt163682.aspx. [Accessed 10 August 2016].

[15] Microsoft Corperation, "Microsoft Azure," Microsoft Corperation,

2016. [Online]. Available: https://msdn.microsoft.com/en-

us/library/azure/mt163628.aspx. [Accessed 10 August 2016].

[16] A. A. Deepal Jayasinghe, Apache Axis2 Web Services 2nd edition,

2011.

[17] [Online]. Available: https://docs.jelastic.com/testing-load-balancing.

[Accessed 20 September 2016].

