

Annual Conference 2018 - IET- Sri Lanka Network

79

Intelligent Micro-Service Auto Scalar

D. Kasthurirathne1, D.P.Liyanage2, S. Ganeshalingam3, A.M.Firnas4, W.J.J.Abayarathne5

Faculty of Computing,Sri Lanka Institute of Information Technology, New Kandy Road, Malabe
1dharshana.k@sliit.lk, 2it13148478@my.sliit.lk, 3it14056826@my.sliit.lk, 4it14064432@my.sliit.lk,

5it10230848@my.sliit.lk

Abstract—this research paper presents a new way of scaling
Docker [1] micro service instances using a reactive, machine
learning model based on the HTTP request load and the resource
consumption of the application. The paper presents how micro
service application behaves and key performance metrics which
needs be consider to scale the instances and how the auto scaling
is achieved using machine learning algorithms. The initial
approach of the development of this project was to collect the
necessary analytical data for developing the model which was used
for the testing of the existing systems. It was also necessary to
develop a rule based scaling system. Based on the results of the
experiment it was decided that a hybrid based approach would be
more efficient compared to the systems in existence. The outcome
of the project is to manage the micro services with the least
interaction from the human user.

I. INTRODUCTION

With the advancement in technology the benefit that a
person gets from day to day life has been exponentially
increased. Out of all the possible products which has been
developed, the main field which has gone beyond a certain
extent is the information technology field. Out of all the
products available there is some way in which the product has
been managed to a certain level by making use of some
mechanism available in the IT area. The development of
products related to this area, requires a proper plan. This is
where the architectures of applications come into play. That is
the proper planning of technology based on the consumer’s
need. However, in terms of building such systems which would
be able to complete complex tasks with the least number of
defects is extremely difficult.

Cloud computing is the most promising fields of technology
available today. This basically covers the concept of internet
based computing. The area of computer technology has been
enhanced to make use of networks where the capability of one
node can be utilized in other nodes. This means it is possible to
have multiple computers connected to provide the necessary
processing to complete a particular tasks. Thus it opens many
areas which has not been thought of at the earlier introduction
of the internet. But along with the advantages there come some
disadvantages basically the balancing of the load of a server.

There are many architectures on which a server level
application can be built upon. The current mainstream ones are
built upon the

Service oriented architecture. The SOA is the main
architecture that is being used to achieve interoperability
between systems. The main purpose is to reduce the amount of
dependent code that will be present in the system. This is
achieved by following a standard mechanism for the data

transfer. This is mainly focused on data piping. There are many
other architectures which have been built upon this architecture
as the base. One such example is the micro service architecture
[2]. There are many advantages that are present while making use
of this architecture while there are also many disadvantages. As
this architecture is built with the principle of scalability as the
main aspect, it is highly adaptable [4]. But since it is adaptable it
becomes difficult to keep track of the services individually. Out
system provides a solution for such problems. The current
systems that are deployed such as the Amazon Web Services
make use of the elastic balancing mechanism which makes use
of virtualization for the purpose of having multiple instances of
different applications to be deployed within a single server
[3].This introduces the possibility of having internal traffic
within the servers thus putting more load to the internal
systems[4], this includes the issues which will need to be faced
when thus it becomes a necessity to introduce a load balancing
mechanism to handle the internal load to the split up virtual
machines[5]. The elastic load balancing used by AWS makes use
of different mechanism for the sole purpose for scaling [6]. The
existing system makes use of variations of the heartbeat
mechanism for the purpose of identifying live and dead services
in the network, the algorithm currently being used for this
purpose is known as SWIM [7].

To overcome such issues, the micro services architecture
was built by Martin Fowler [8]. The basic idea was to have a
containerized system, i.e. multiple VM’s running different
functionalities with the least amount of coupling possible [9].
Micro service architecture can be used to create an application
where the micro service instance level coupling is too low. So
that the application can be scaled as per to the requirements.
But in a normal micro service based application there can be
number of independent micro service instances allocated to do
specific task where the application managers could not be able
to identify each individual micro service instance which should
be scaled up or down. This is one of the main reasons where
most of the companies do not go for micro service based
architectures

But with intelligent auto scaling the application itself will
identify the load patterns and resource consumption of each
running micro service and based on the collected data and the
past data the application will auto scale which will remove the
burden of management of the application from the respective
engineers.

Google has implemented a platform named Kubernetes
which is one of the key tools available for container
orchestration [10]. It implements an auto scaling module but it
is based only on the cup consumption level of micro service
instances. The existing system will be able to manage the micro

Annual Conference 2018 - IET- Sri Lanka Network

80

services individually via rules, but this again would require
human intervention for the system to function with the least
downtime in production [11]. Our main project is focused on
the development of a mechanism or tool which would be able
to bypass this limitation without giving any disadvantage to
the user.

The existing system will be able to manage a system which
is developed using the micro services, this would give an
overall visibility of how the system which is deployed, will
function in a live environment. The current drawback which
has been identified would be that the system would not be able
to scale if there are requests for which it would not be able to
find the pattern for. Therefore in the future it would be
necessary for implementing an architecture which would be
able to bypass these limitations without any constraints in
place.

II. METHODOLOGY

The existing system, as described in the need for auto
scaling, does not have a way of identifying the required
resource allocation based on the usage of the system. The

current ways of identifying the shortest path to the service
[12] make use of the orchestration of the services to identify
the routes. These routing mechanisms are not being used in
the existing systems to get the best execution patterns. The
proposed system will be able to bypass this deficiency by
providing a plugin which can be attached to any system which
has the Docker system [13] involved with the micro services.
The system will need to have an adjustment period of a
minimum of at least 2 weeks to get the required data. Until the
data has been accumulated it will function as a rule based auto
scalar. The system will be composed of the following modules

A. API Gateway

The API gateway will be implemented to associate the
required URL called to the required service by introducing a
tagging system to the Meta data. This tag will be made use for
identifying the required tasks and putting them onto the queue.
This will be made use of when the results are obtained and the
reply is sent back to the API gateway.

B. Message Router

The message router is the main component for uniquely
identifying the tasks and to assign it to the designated queue.
The queue will be built by making use of apache Kafka. A
common topic will be placed to which the message router will
listen to. The messages from the API gateway will be placed
on this queue and the router will read its content and based on
the configuration which will be set for the router, the router
will identify the queue to which the message will need to be
passed. After the message router picks up on the result, the
result will later be forwarded back to the API gateway.

C. Apache Kafka

Apache’s Kafka queue implementation will be made use
of for the purpose of managing the tasks. The message router
will be responsible for putting and getting the tasks from the
queue. These components will be responsible for the
deployment of the micro services to our customized system.
After the deployment is completed the following components
will be responsible for the management of the services in an
intelligent manner.

D. Data Collection Module

The data collection module is responsible for the
aggregation of data from the API gateway along with the
resource management data from the micro services analyzing
module. This will later format the data and store them inside
the database for future usage. The data collection module will
decide on the stream it should take based on the type of data it
accesses.

E. Micro service analyzing Module

This will be a service which will be deployed in the Docker
that would be able to collect data from the micro services which
are currently deployed on the Docker. To state a few, the
resources used based on the container and the images deployed.
The Docker will provide the required information by making use
of command line interface. This data will be collected
individually for all the deployed containers and send to the data
collection module.

F. Data Analytics and load prediction

This module will be mainly responsible for the collection of data

and analysis of the URL load which enters through the API gateway.
The collection of this data will take place in the Kafka queue which
will be able to provide the required data dump based on the queue
tasks. This includes details such as the container which previously
completed the tasks for a particular tag, the time for the completion,
the containers sequence through which the call took place. This
among others will be responsible for the prediction of the load for
the next couple of days. The load will be based on the number of
service calls which would be required to complete a particular tasks.
The data analytics and load prediction module will be able to analyze
it in a higher level and analyses just the URL load rather than what
will tend to happen to the micro services on the call.

G. Micro services instance manager

The micro services instance manager will be the module which
would be able to increment and decrement the instances based
on the load and other prediction based data. The Micro services
instance manager will have a mechanism, a rule based
management system at the initial deployment of the system
which will make use of a set of predefined values for the CPU
and memory to decide whether the instance should be
duplicated or whether it should be removed based on the real
time data feed from the Docker. After the system has
aggregated the required amount of data, the micro services
instance manager will be able to automatically switch to the ML
based prediction and have the rule based mechanisms running
in the background in case the service fails at some instance.

H. System traffic analyzing and learning module

This module is mainly responsible for generating a base m
module. Since the data which is collected from the other
modules do not have a common metric, it becomes necessary to
build a weight based model which would be able to give a
weight for the container based on the load analysis and the
resource allocation analysis. The system will make use of
Recurrent Neural Networks for the purpose as the RNN’s are
capable of recursively learning from the collected data thereby

increasing the accuracy of the output results.

Annual Conference 2018 - IET- Sri Lanka Network

81

The LSTM RNN(Long Short Term Memory Recurrent
Neural Networks) are able to take this a step further by
allowing the model to remember the previous data, so if the
normal RNN have a single layer to learn from, the LSTM
RNN would have multiple layers instead with all its previous
records included . This will increase the accuracy of the
predictions to a higher level as they would recursively learn
from the past data along with the current data. The tagging
introduced to each micro services will be useful in identifying
the services which are frequently called based on usage. This
will also be considered while developing the weights for the
containers.

I. Reporting module

The reporting module would be able to generate the

necessary visuals to show the current status of the services,

along with the overall architecture of how the micro services

connect. It is also possible to view the sequence in which the

container executed based on the URL along with finding out the

services which are most latent and which are most used. The

reporting module can generate the required

Overall the main system will be independent of application

that will be deployed onto the Docker and the proposed system
will be analyze any type of micro service that are deployed
regardless of the language used as long as they are tagged.

I. Micro service framework

Below figure 2 is the high level architectural diagram
which describes the message routing design of the
implemented

A pseudo-code for the system where the rule based
mechanism is given below.

Fig. 1: High level architecture diagram

Program RuleMechScaling
WHILE TRUE

DO FOR 10 MINS

AGGREGATE CONTAINER
DATA; DESERIALIZE DATA;

IF CPU_LOAD > THRESHOLD_CPU
OR MEMORY_LOAD >
THRESHOLD_MEM THEN

INCREASE CONTAINER
FOR IMAGE;

END

END

END

Annual Conference 2018 - IET- Sri Lanka Network

82

The system is being evaluated by making comparisons to

existing systems which make use of the machine learning model

and the rule based mechanisms individually. The system which

is currently the product of this research makes use of the both of

them to predict and respond on real time. The comparison chart

for the system is given below.

Fig. 2: Micro service framework

This is the simplified version of the algorithm that is being
used in the system for the rule based mechanism. The idea
behind and the machine learning model for the data to be used
in the scaling of the containers. The machine learning models
that are currently being used in the system are basically making
use of the LSTM RNN. The short term long term recursive
neural networks are basically RNN which have the ability to
conditionally retain data based on the new data being fed into
the model and make use of these conditions to determine the
predictions for parameters passed onto the model.

The evaluations were fair, by which the deployed systems
and the configurations used were the same, plus the experiment
was carried out 3 times from which the average was taken. The
system evaluation criteria was based on the properties which
would need to be tested on a live system. This would basically
include anything which is directly related to the scaling of the
system

III. RESULTS AND DISCUSSION

It has been realized by the team that as the architecture
which is currently in existence is not mature enough to include
variations to a scale which would overall change the
architecture a different approach was necessary. The existing
frameworks which were used to develop the micro services
were found to be full of bugs making it impossible to create a
proper micro service based application. Therefore the system is
required to be micro services. The services were built through
a custom architecture which we build to ensure that we could
the required amount of data for the development of the ML
model. The data we collected proved that the existing
mechanisms such as rule based. The advantage of using the
system we developed would be to enable a dynamic
environment which would be able to change according to the
system being deployed and auto manage so there would not be
less human interaction. The results we have found out is that the
current system will be able to manage the micro services with
the initial configuration for the orchestration deployed with the
Dockerfile.

TABLE I: Comparison chart

 Rule
Based

Machine
Based

Hybrid

Load to

system(Analysis)

200

Requests

100

Requests

Resource Usage 10 % 45% 55%

Scalability 600 sec 350 sec 200 sec

Based on the above comparison it is clear that the current
project that has been developed yielded better results compared
to the existing systems

The system was tested in varying scenarios giving out a wide
range of results. When comparing the rule based and machine
learning models, it is possible to see that overall the load analysis
and the resource usage is a bit higher for the hybrid model, as it
would do the combined tasks of both the rule based and machine
learning based systems, but overall comparing the time required
for the system to respond to immediate demand of the services, is
significantly less for the Hybrid based model. This would
basically mean at the initial stages of the system the hybrid model
might take more time for processing the data but after it has
properly aggregated and the predictions are made, it is possible
to scale the system based on demand more efficiently.

Based on the above comparison it is clear that the current
project that has been developed yielded better results compared
to the existing systems.

Fig. 3 cpu load-time graph (rule based load balancing)

Annual Conference 2018 - IET- Sri Lanka Network

83

Fig. 4:cpu load-time graph (machine leaning based load
balancing)

while also gives an insight as to how the micro services work
within the system.

It also becomes possible to keep track of all the services
which are being used, which are currently being tracked and
make use of this information to free up server resources.

Apart from the above features it is also possible to track the
redundant micro services by making use of the system. The
system will be able to individually identify the services that are
currently in use in real time along with the redundant service,
allowing the developer to know the exact performance of the
micro services and to decide whether certain micro services can
be removed from the application to boost the overall
performance.

The above graphs are a comparison of the weightage of
the average of CPU usage and the memory usage required
by the system for the scaling of the services. The data has
been collected from the rule based, ML based and hybrid
based scaling systems for comparison purposes. This has
been given a fair evaluation by providing the same
specifications for all systems and running the same services
with the same load for testing purposes. A client was
prepared which would give out the required requests to all 3
systems in a similar manner. The graphs denote that the
weightage for the ML based system happens to be more
significant compared to the other 2. The hybrid which makes
use of both mechanism has a faster response time compared
to the others. Therefore in conclusion we can say that the
hybrid based model is more efficient and less resource
intensive in comparison to the ML based system. But the rule
based system has the least usage of resources, but will not
be nearly as accurate the hybrid which makes use of the
prediction from the ML for scaling purposes.

III. CONCLUSION

The paper proposes an intelligent auto scalar for the
Docker a containerized management system which is capable
of the deployment of micro services. By having something
like an auto scaling application it becomes possible to
manage the applications built on top of the micro services
architecture with minimal effort. It also becomes possible to
analyze the changes in the application in real time while
monitoring all the changes which take place in the
application. Thus this takes out the disadvantages of having
well trained teams to manage each individual micro service

REFERENCES

[1] "Docker Documentation", Docker Documentation, 2017.
[Online]. Available: https://docs.docker.com/. [Accessed:
18- Aug- 2017].

[2] RICHARDSON, C. What are microservices? In-text: [6]

Your Bibliography: [6]C. Richardson, "What are
microservices?", Microservices.io, 2017. [Online].
Available: http://microservices.io/. [Accessed: 27- Mar-
2017].

[3] G. Wang and T. Ng, “The Impact of Virtualization on
Network Performance of Amazon EC2 Data Center,” in

 IEEE INFOCOM, San Diego, CA, March 2010, pp. 1–9.

[4] How to Think About AWS & Scalability,” A
Comprehensive Guide to Building a Scalable Web App on
Amazon Web Services - Part 1. [Online]. Available:
https://www.airpair.com/aws/posts/building-a-scalable- web-
app-on-amazon-web-services-p1#2-how-to-think- about-aws-
scalability. [Accessed: 27-Mar-2017].

[5] MOHAPATRA, S., SMRUTI REKHA, K. AND
MOHANTY, S. A Comparison of Four Popular Heuristics
for Load Balancing of Virtual Machines in Cloud
ComputingIn-text: (Mohapatra, Smruti Rekha and Mohanty
33-38) Your Bibliography: Mohapatra, Subasish, K. Smruti
Rekha, and Subhadarshini Mohanty. "A Comparison Of Four
Popular Heuristics For Load Balancing Of Virtual Machines
In Cloud Computing". International Journal of Computer
Applications 68.6 (2013): 33-38. Web.

[6] “How elastic load balancing works,” [Online]. Available:
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/
DeveloperGui de/how-elb-works.html

[7] DAAS, A., GUPTHA, I. AND MOTIVALA, A. SWIM:
scalable weakly-consistent infection-style process group
membership protocol - IEEE Xplore Document In-text:
(Daas, Guptha and Motivala) Your Bibliography: Daas,
Abinandhan, Indrnail Guptha, and Ashish Motivala. "SWIM:
Scalable Weakly-Consistent Infection-Style Process Group
Membership Protocol - IEEE Xplore Document".
Ieeexplore.ieee.org. N.p., 2017. Web. 27 Mar. 2017.

[8] FOWLER, M. martinfowler.com In-text: [5] Your
Bibliography: [5] M. Fowler, "martinfowler.com",
Martinfowler.com, 2017. [Online]. Available:
https://martinfowler.com. [Accessed: 27- Mar- 2017].

[9] Shridhar G.Domanal and G. Ram Mohana Reddy, “Optimal
Load Balancing in Cloud Computing By Efficient
Utilization of Virtual Machines” in the Proceeding of the
IEEE International Conference on Communication Systems
and Networks, Bangalore, Jan. 2014, pp. 1-4.

[10] MICROSERVICES IN PRACTICE - KEY

Fig. 5: cpu load-time graph (hybrid load balancing)

:cpu load-time graph (hybrid load
balancing)

https://www.airpair.com/aws/posts/building-a-scalable-web-app-on-amazon-web-services-p1#2-how-to-think-about-aws-scalability
https://www.airpair.com/aws/posts/building-a-scalable-web-app-on-amazon-web-services-p1#2-how-to-think-about-aws-scalability
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGui
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGui
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGui
https://martinfowler.com/

Annual Conference 2018 - IET- Sri Lanka Network

84

ARCHITECTURAL CONCEPTS OF AN MSA In-text:
[7] Your Bibliography: [7]"Microservices in Practice - Key
Architectural Concepts of an MSA", Wso2.com, 2017.
[Online]. Available:
http://wso2.com/whitepapers/microservices-in-practice-
key-architectural-concepts-of-an-msa/. [Accessed: 27-
Mar- 2017].

[11] Hemant S. Mahalle, Parag R. Kaveri and Vinay Chavan
(2013, Jan.). Load Balancing On Cloud Data Centres.
International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 3(issue 1), pp. 1-4.

[12] C.E.Perkins and E. Royer. Ad hoc on-demand distance
vector routing. In Proc. 2nd IEEE Workshop on Mobile
Computing Systems and Applications, pages 90–100,
1999.

[13] JARMILLO, D., NGUYEN, D. V. AND SMART, R.
Leveraging microservices architecture by using Docker
technology - IEEE Xplore Document In-text: [4] Your
Bibliography: [4]D. Jarmillo, D. Nguyen and R. Smart,
"Leveraging microservices architecture by using Docker
technology-IEEEXploreDocument",
Ieeexplore.ieee.org, 2017. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7
50 6647. [Accessed: 27- Mar- 2017].

http://wso2.com/whitepapers/microservices-in-practice-key-architectural-concepts-of-an-msa/
http://wso2.com/whitepapers/microservices-in-practice-key-architectural-concepts-of-an-msa/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7506647

