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Abstract— A time series is a quantity sampled regularly in time 

where the techniques used in its modeling and characterization are 

dependent on the complexity of its statistical properties. Domestic 

electricity consumption exhibits time series in the form of time 

varying usage patterns. These patterns are of fundamental 

importance in determining load based pricing schemes and in 

more effective generation and distribution planning. 

Clustering individual household electricity consumption patterns 

enables a utility to design pricing plans catered to groups of 

households in a particular locality to more accurately reflect the 

cost of supply at a particular time of day. Dynamic pricing is an 

attempt to change the consumption behavior to one that is more 

uniform and devoid of sharp peaks ensuring a more uniform 

utilization of generation capability avoiding idle capacity at times 

of low demand. 

In light of this we model the movement of collections of such time 

series in order to observe the relative movements between them 

with a view to understanding their group behavior and 

characteristics not otherwise outwardly visible. 

Time series clustering can be accomplished by directly clustering 

samples of the series using an established method of clustering or 

one could estimate various representative characteristics of each 

series that are then used to parameterize the series and form the 

attributes used in one of the standard clustering techniques. 

In this paper we model each time series as an Autoregressive 

Moving Average (ARMA) process with an optimal model order 

determined by the Akaike Information Criterion when the 

parameters estimated by the Hannan-Rissanen algorithm 

converge. The estimated model has the representation of a transfer 

function with a frequency response defined by the ARMA 

parameters. We use the frequency response as the means to 

further refine the within cluster profiling and classification of the 

objects. 

Through our modeling we are also able to identify instances where 

the consumption behavior exhibits patterns that are 

uncharacteristic or not in line with the behavior or consumption 

profiles of the other households in a particular locality providing 

insights in to potential faults, fraud or illegal activity.  

Keywords— Time Series, ARMA, Clustering, Stochastic 

Processes 

I.  INTRODUCTION 

Electric power utilities are faced with the challenge of 
delivering an uninterrupted power supply in the face of widely 
varying demand. This variation in demand which exhibits broad 
seasonal patterns across the day, day of week and longer periods 
also depend on working hours, holidays and climatic 
conditions. As many consumers consisting of both households 
and businesses react to these conditions at the same time they 
create a seasonal pattern in the demand for electricity. This 
seasonal demand for electricity exhibits periods of very high 
demand or peaks and low demand at other times. The utility 
then has the challenge of meeting the demand for peak power 
at different times of the day and so has to dimension the 
generation and distribution capacity to meet this seasonal peak 
in demand. A more uniform distribution in demand would on 
the other hand enable the utility to have lower generation and 
distribution cost as the required peak generation capability is 
lower requiring comparably lower investment.     

In the Sri Lankan context, utilities often rely on thermal 
power to augment the hydro power output in times of peak 
demand especially when the demands on the reservoirs are high 
or the need to conserve water is great. This reliance is an 
additional burden on the country due to the relatively high cost 
of fuel oil and coal. Thus the ability to regulate demand to some 
extent so that the total demand on the utility at its peak hour is 
considerably reduced will greatly help in reducing the overall 
cost to the utility and the country in general. 

In light of this, smart meters are being introduced to 
remotely measure the demand for electricity and the power 
consumption patterns of the consumer at intervals of up to 15 
minutes. These measurements provide the utility with a near 
real time view of consumer demand and a good understanding 
of historical patterns in demand.  

As with any product which is subject to market forces the 
laws of supply and demand impact and determine its price. Thus 
the cost of production and supply of electricity is higher at times 
of peak demand than when the draw on the network is low. The 
goal of the utility is then to price the supply of electricity at a 
cost which is reflected in the cost of production. This leads to a 
variable pricing scheme for the supply of a Kilowatt of power 
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depending on the variation in demand that typically exhibits a 
seasonal pattern. In other words the cost of production will vary 
with time of day and therefore the price of supply too should 
reflect this variation. 

Pricing electricity to reflect the cost of production will help 
to reduce the seasonal peak in the demand to some extent as 
consumers shift their consumption pattern to take advantage of 
lower costs at different times of the day. The shift in 
consumption pattern to a more uniform one will depend on the 
degree of incentive offered to consumers by appropriately 
pricing the supply at different times of the day.  

The advent of smart equipment and network controlled 
household equipment and devices will help consumers to use 
these incentives to better plan how they operate their electric 
devices. The internet of things (IOT) makes remote monitoring 
and operation of electric devices easier to schedule according 
to a pre-arranged time table that takes advantage of lower 
electricity prices.     

These initiatives require the utility to understand the 
consumption patterns in different types of households, 
businesses and other organizations. The demand which takes a 
time varying pattern is best understood and modeled as a time 
series. Collections of these time series will exhibit broadly 
similar behaviors as they represent consumers with similar 
circumstances giving rise to similar consumption patterns. 
Grouping consumers based on their consumption pattern is the 
first step towards creating consumer specific billing plans or 
tariff structures catering to a particular segment of the market.  

In this paper we propose a novel procedure for grouping 
collections of time series with the aim of identifying those that 
exhibit similar variations or patterns in time. Specific incentives 
can then be designed for each type of group depending on their 
particular consumption pattern. These incentives also have the 
objective of reducing the peak in the consumption pattern of the 
consumers and creating a more uniform power utilization 
profile.         

II. EXISTING TECHNIQUES FOR CLUSTERING TIME SERIES [5] 

Time series may be grouped according to the similarity of 
each sample in one series with the corresponding sample in the 
other series using traditional cluster analysis methods, or in a 
second approach features may be estimated for each series and 
the resulting features clustered or in a third approach a model 
representative of the time series estimated and the models used 
as the means for comparison and grouping the time series.  

 

A. Direct Clustering 

Traditional cluster analysis algorithms like K-Means, Fuzzy 
C means and Hierarchical clustering can be employed to form 
groups of time series by making comparisons between the 
corresponding time samples of each series. In these approaches 
each time series is compared with the rest using a measure of 
“similarity” or “distance” to determine how “close” or “similar” 
each series is to the rest. In these methods however each sample 

is considered a feature and depending on the length of the series 
there could be hundreds if not thousands of features.  

This approach therefore is not ideal for this type of problem 
as a time series is more akin to a sampled version of a single 
feature and not a collection of features where each feature 
corresponds to a sample in time. 

B. Feature Estimation & Clustering  

Each time series could be summarized by estimating 
quantities representative of each series like its minimum, 
maximum, mean and other descriptive statistics. This is in 
effect a process of dimensionality reduction where we represent 
each series with a collection of representative features where 
the number of features is considerably less than the length or 
number of samples in the time series. 

These features can then be clustered using one of the 
traditional clustering algorithms to create groups of time series 
that behave in similar fashion based on the features selected to 
profile each time series. 

This method too is not ideal in that the entirety of the time 
series is not modeled but a feature extracted from the time series 
used in its characterization. Thus certain nuances in the 
behavior of the time series will not be captured and in any event 
the features cannot capture the holistic behavior of the time 
series giving rise to a rather rudimentary representation of their 
group behavior.   

C. Model based Clustering 

In this approach a model that can represent the overall 
behavior of the time series is created. The models then become 
the means by which the comparison between time series is 
made. Models can be compared with respect to their complexity 
or model order, model parameters and other characteristics that 
arise as a result of the way the model is configured. 

The random process underlying a time series captures both 
its time and frequency behavior. Modeling the random process 
is then a means by which time series can be compared. 
Autoregressive (AR), moving average (MA), autoregressive 
integrated moving average (ARIMA) are some of the models 
that can be used to estimate the random process underlying a 
time series [1]. 

 

 

 

 

Fig.1: System function representation of an ARMA process   

In these approaches the time series Yn is modeled as being 
the result of a filtered sequence of independent identically 
distributed (IID) random variables      (also called a white noise 
source, most often assumed to be drawn from a normal 
distribution) together with delayed versions of the time series 
Yn itself. These models are a powerful yet compact way of 
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capturing the dynamics underlying complex behavior both in 
the time and frequency domains. 

 

III. A NOVEL TIME SERIES CLUSTERING ALGORITHM 

We propose an algorithm that models the generative process 
underlying the time series of the selected features. In our 
modeling we treat each time series as being the result of an 
autoregressive moving average (ARMA) process. Such 
processes are ideally suited to model complex patterns and large 
variations in the observed time series in models of low 
complexity. In this regard the estimated model is robust with 
respect to the length and the complexity in the exhibited pattern. 

The algorithm estimates a series of ARMA models with 
increasing levels of complexity for each time series using the 
Hannen-Rissanen algorithm to estimate the model parameters 
in each case. Models with different levels of complexity 
provide different error sequence behaviors and convergence 
performance for the estimated ARMA model parameters. The 
proposed algorithm selects the most parsimonious model for 
which the model parameters converge to a steady state.   

In models of this type the error convergence performance 
improves with increasing model complexity. More complex the 
model the tighter the bound on the error sequence. This tradeoff 
between model complexity and variance in the error sequence 
is captured in the Akaike Information Criterion (AIC) measure.  

The AIC is used to determine the simplest ARMA model 
for which the error sequence is bounded to within a specified 
tolerance. In other words we select the model with the lowest 
AIC value for which the model parameters converge. The 
convergence of the ARMA model parameters is established 
when the ratio of the variance to the mean of each parameter is 
bounded to within 10%. 

A. The Hannen-Rissannen Algorithm [3] 

When the underlying process is locally stationary, the 
parameters 𝑎𝑖 and 𝑏𝑗 given by equation (1) are constant. When 

the process is non-stationary the parameters will be time 
varying. In such a case where the source is non-stationary a 
sample by sample estimate of the parameters can be made. 
Using a model described by a set of constant parameters to 
model a statistically non stationary process trades the amount 
of error tolerable with the degree of non-stationarity in the 
modeled data source. An ARMA(p,q) process can be described 
via equation (1)  

 

                                                                                           (1) 

where  𝜖𝑛 is a sequence of zero mean serially uncorrelated 
random variables with finite variance (white noise) 
uncorrelated with Y. In some incarnations we may insist on the 
noise sequence to be independent identically distributed (IID) 
as well. 

Taking Z transforms (alternatively one can use the 
backward operator “B” as is found in the time series literature) 

 

 

                                                                                         (2) 

We arrive at a “system transfer function” 

 

                                                                                                (3)                                                                                                  

Rewriting (2) & (3) as a high mth order pure AR process given 
by equation (5) 

                                                                                                (4)  

                                                                                                (5) 

                                                                                                (6) 

 

Formulate the parameter estimation of the high order pure 

AR process via Yule - Walker equations via equation (7) 

 

                                                                                                   

                (7) 

 

the autocorrelation function is given by (8) when  lag h ~= 0  

                                                                                                (8) 

 

when ℎ = 0 at zero lag the autocorrelation is given by (9)                                                                              

                                                                                                (9) 

 

                                                                                              (10)  

                           

In the case of real processes                                      

 

The parameters           can be estimated from the Yule-Walker 
equations  via equation (11)   

 

 

                                                                                              (11) 

 

 

qnqnnpnpnn bbYaYaY    ...... 1111

)(]...1[)(]...1[ 1
1

1
1 zEzbzbzYzaza q

q
p

p
 

)(
]...a[1

]...b[1
Y(z)

1
1

1
1

zE
zaz

zbz

p
p

q
q










)()()( zEzYz 

npnmnn YYY    ...11

m
m zzzz    ...1)( 2

2
1

1

}{}{...}{}{ 11 hnnhnmnmhnnhnn YEYYEYYEYYE   

}{)(...)1()( 1 hnnm YEmhrhrhr  

2}{  hnnYE

)(...)1()0( 1 mhrhrr m  

)()( hrhr 

i























































)(

...

)1(

..

)0(...)1(

.........

)1(...r(0) 1

mr

r

rmr

mr

m





 
Annual Conference 2018 - IET- Sri Lanka Network 

 

41 
 

   
 

Once a preliminary estimate for the autoregressive 

parameters   

         has been made, the error sequence can be estimated 

by substituting in equation (5) rearranged as equation (12) 

 

                                                                                                                                                                                                                                                                                                                                         

and the error sequence at different lags calculated via (12) is 

depicted in the (13) through (14) 

 

                                                                                              (13)             

 

                                                                                              (14)                            

                                                                                                                                                                                                                                     
The estimation of parameters of the original model equation 
(1) given by 

 

                                                                                

can then be put in the form of a least squares parameter 

estimation problem where 

                                                                                                    

                                                                                                   

 

                                                                                               

 

       (15) 

that takes the form  

                                                                                              (16)     

 

                                                                                              (17)      

      can then be estimated by iterating until the parameters 

converge (or in our case we iterate a certain maximum number 

of times) and determine the Akaike Information Criteria value 

for that specific ARMA(p,q) model. 

 

B. Akakike Information Criterion 

The Akaike information criteria (AIC) provide a means for 

estimating the model order of a ARMA(p,q) random process. 

The AIC trades the variation in the error sequence with the 

number of parameters used to define the model or its degree of 

complexity. 

As the number of parameters increase the variance in the error 

should decrease, and the AIC measure provides a convenient 

means for arriving at a suitable model order by trading this 

decrease in the variance of the error with the increase in the 

complexity (number of model parameters) of the model. 

 

AIC = log(error variance or sum of squared prediction error) + 

2*(p+q)          (18) 

The number of parameters (p+q) are a penalty term that 

compensates for the lower bounds on the error sequence that 

results with increasing model complexity.                                                                                          

C. Model Selection 

A series of ARMA(p,q) models of increasing complexity 

are estimated for each time series via the Hannen-Rissanen 

algorithm described above and the resulting AIC measured for 

each model. We select the model that provides the minimum 

AIC for a set of converged parameters. 

The time series are grouped according to the ARMA(p,q) 

model that best describes each series.  

D. Frequency Response[6] 

The ARMA model estimated for each time series captures 

the essence of its variation in time in a relatively low 

dimensionality model when the complexity of the time series is 

low. In this interpretation the time series is the result of a 

delayed version of itself which is driven by a white noise 

process. A white noise source is in theory one that contains all 

frequency components but for practical purposes it is typically 

a band limited signal. 

The ARMA model has another interpretation, that of a 

digital filter with a phase and frequency response determined 

by the values of its model parameters. The frequency response 

indicates the degree to which each frequency in the input 

spectrum is impacted (amplified or attenuated) when it appears 

at the output. Since these two interpretations give rise to the 

same model we can conclude that the time series is in effect a 

filtered version of itself driven by a white noise source where 

the frequency response of the ARMA model determines how 

the frequencies are impacted in the output spectrum.  

Thus a time series with high frequency components is likely 

to be the result of an ARMA model with a frequency response 

that allows high frequencies. A time series that is 

predominantly low frequency in character is likely to be 
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produced by an ARMA random process that does not attenuate 

low frequencies, such as low pass filter. 

Since the parameters of the model determine its frequency 

response, and the parameters may differ from series to series 

the frequency response need not be unique across models of a 

particular complexity.  

IV. ANOMALY (OUTLIER) DETECTION CRITERIA 

 

Another result of this modeling is the ability to detect those 
power consumption patterns that exhibit behavior significantly 
different from the rest. Outliers in this context are those time 
series that may be the result of power consumption entities that 
are anomalous in the kind of power consumption equipment or 
feature some internal fault or perhaps engaged in fraud. 

We group the time series by ARMA models of a particular 
complexity. Outliers can be identified as those groups of 
patterns that are very few in number that fit a given order of 
ARMA model complexity.   

Within a particular class of model complexity we can also 
compare the ARMA parameters of each time series to 
determine how similar individual time series are to each other. 
In this way we may further refine the grouping of the time series 
within a particular class of model complexity by clustering the 
ARMA parameters of each series to obtain groups of time 
series. Through this process we are also able to identify time 
series that are very similar and those that are very different from 
the rest of the series within a given class of model complexity. 

V. RESULTS 

 Average daily power consumption patterns of 100 entities 
sampled every 15 minutes are analyzed to demonstrate the 
operation of the algorithm. Each time series is modeled 
independently and those that fall in to a particular class of 
model complexity are grouped together.  

The time series within each class of model are further 
analyzed to determine those that have parameters that most 
closely resemble each other. Those time series that belong to a 
particular class of model and at the same time are described by 
parameters of similar value are those that exhibit similar power 
consumption patterns. These series will be similar both in time 
behavior and frequency content as the parameters of the model 
also determine its frequency response. 

Entities with power consumption patterns that fall in to 
particular clusters can be offered a common tariff depending on 
the time of day the peak consumption patterns of the group 
occur. The elasticity of demand for electricity will be a function 
of time in addition to its price. Thus the relationship between 
quantity demanded and the price of a unit of electricity will take 
different forms depending on the time of day, locality and other 
demographic and econometric factors. The time based tariff 
structure designed to alter the consumption pattern of the group 
reflects these concerns.  

A. Total (average) power consumption profile 

 

Fig.2: Total power consumtion of all 100 entities 

Figure 2 presents the total power consumption pattern of all 

100 entities. We notice two clear peaks around 5:00 AM - 

7:30 AM (corresponding to time samples 20 and 30) and 7:00 

PM – 10:30 PM (corresponding to time samples 76-90). 

B. Time series grouped by model complexity 

 Figure 3 depicts the time series that are best described by an 
ARMA(1,2) model featuring one autoregressive parameter and 
three moving average parameters. There are 68 time series that 
belong to this group of the original 100, each identified by its 
ID. 

 

Fig.3: Time series that fit models of complexity ARMA(1,2) 

Figure 4 presents the autoregressive and moving average 

parameters of the collection of  time series depicted in Figure 3, 

each modeled as an ARMA(1,2) processes of the form given by 

equation 19. 

                                                                                          (19) 221111   nnnnn bbYaY 
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Fig.4: Parameters of time series that fit models of complexity ARMA(1,2) 

We observe that most ARMA(1,2) parameters are clustered 

together as depicted in figure 4 as the time series in the group 

are broadly similar. Thus most parameters are very similar to 

each other with the exception of a few time series like number 

25 that has parameters significantly different from the rest. We 

may identify time seies 25 as an outlier from within the broad 

group of patterns that fall in to the class of models with 

complexity ARMA(1,2). 

We notice that the consumption pattern of this series 

depicted in figure 5 is different from the average power 

consumption paterns of the majority of the series with a peak 

arround time sample 40-48 coresponding to 8:00AM – 

10:00AM. 

 

Fig.5: Outlier power consumption pattern No 25 of group ARMA(1,2) 

 

Fig.6: Total power of all time series with model complexity ARMA(1,2) 

Figure 6 depicts the total power consumption of all time 

series modeled as ARMA(1,2) processes and depicted in figure 

3. We observe that the pattern in the outlier time series number 

25 depicted in figure 5 is different to the average behavior of 

the ARMA(1,2) group to which it belongs. 

Figure 7 depicts the time series that are described by 

models of complexity ARMA(3,4). Since there are two time 

series in this group, we may consider them outliers as they are 

relatively few in number and belong to a class of model that is 

different from the other models. 

 

Fig.7: Time series that fit models of complexity ARMA(3,4) 

The autoregessive and moving average parameters of the 

two series numbered 26 and 60 are given in the two arrays 

below. 

[0.8369  -0.7429  1.0646  1 0.8309  0.6752  0.5491  0.3363] & 

[0.9325 -0.8261  0.9477  1 0.8137  0.6589   0.5539  0.3765].                   
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The two sets of parameters are reasonably close and the 

underlying two time series also display a reasonbaly close 

similarity of pattern. 

 

Fig.8: Time series that fit models of complexity ARMA(3,3) 

Figure 8 depicts the time series that are descried by models 

of complexity ARMA(3,3). As there is only a single time series 

in this group, we may consider it an outlier as well. We also 

observe that the consumption pattern is clearly different from 

the other patterns with a single peak arround sample 90, which 

corresponds to a time 10:30 PM. 

C. A time based tariff structure that reflects elasticity of 

demand to price 

There is a negative relationhip between quantity demanded 

and price as depicted in Figure 9 and we expect the form of the 

relationship to change with time of day within a particular 

cluster of power consumpton entites. Thus the rate of change of 

quantity demanded with price will also vary with time of day. 

Hence the price discount required to reduce demand will also 

depend on the time of day. 

 

 

 

 

 

 

  

 

 

Fig.9: Price sensitivity of electicity demand at a given time (low demand) 

In one strategy we may offer a discount to a group of 

entities in a cluster such that the peak demand is flattened. A 

discount on a unit of power applied to time periods both before 

and after the peak can accoplish such an effect. Different 

discounts will apply for the periods both before and aftter the 

peak depending on the sensitivity of quantity demanded to a 

change in price. The discount can also be determined by taking 

in to account the total reduction in peak energy that is desired 

and the price elasticity of demand. 

   

 

 

 

 

 

 

 

 

Fig.10: Time varying peak demand of the selected group 

Figure 10 depicts a typical peak demand pattern of a group 

of entities. 

 

 

 

 

 

 

 

 

 

 

Fig.11. Load balancing by shifting demand for the group depicted in Fig 10 

      Figure 11 depicts how the peak demand may be lowered by 

shifting demand to time periods before and after the peak by 

Time of Day (Hrs) 

Time of Day (Hrs) 

KWH 

KWH 

Price 

        Q1       Quantity Demanded 

P1 

dQ1 

dP1 
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offering a discount over the periods indicated by the double 

arrows. For a given discount, higher consumption will be 

observed in time periods further away from the time at which 

the peak demand occurs due to a comparatively lower cost. The 

price per unit will be highest at the peak demand and drop to 

lower values in periods both before and after the peak. As a 

result the total quantity consumed will be low at the peak and 

the amount consumed will rise on either side of the peak. 

We would expect a gradually increasing power 

consumption pattern for time periods after the peak and a 

gradually decreasing power consumption pattern in time 

periods approaching peak demand. In this way we may 

envisage a scenario where the total power consumption remains 

unchanged while the peak demand is reduced by shifting the 

demand to periods both before and after the peak resultng in a 

more uniform overall power consumption pattern as depicted in 

Figure 11. It is expected that the entites have smart devices that 

allow scheduling tasks to other times. 

Figure 9 illustrates how the price elaticity of demand can 

be calculated using the relationship beteen quantity demanded 

vs. price corresponding to a specifc time of day. The curve is 

one that depicts a slope that is not steep and the relationship is 

elastic as the percentage change in quantity demanded is larger 

than the corresponding percentage change in price. 

The price elasticity of demand (PED) is the percentage 

change in quantity demanded as a ratio of the percentage change 

in price.  

                                                                                              (20)        

 

Assuming that this relationship holds for a period of low 

demand and that we wish to shift a quantity of demand Q to this 

period, we can determine the required percentage change in 

price %P by substituting Q for dQ1 and inverting equation (20) 

to get equation (21). 

 

                                                                                              (21)        

 

VI. CONCLUSION 

Through our modeling we establish that the proposed 
algorithm can group time series according to the broad 
similarity of pattern in its observed time behavior and frequency 
content. 

The algorithm estimates an autoregressive moving average 
model of the lowest complexity that best represents the 
underlying random process governing each time series. The 
estimated model is thus optimal in the sense of achieving the 

optimal tradeoff between the bound on the variance of the error 
sequence and the number of parameters used to define the 
model. 

Each model is thus described by a set of ARMA parameters 
that also describes the time behavior and frequency content of 
the modeled time series. Thus time series that exhibit a similar 
pattern would have a similar set of ARMA parameters within a 
given class of model complexity. Those time series that are 
different would as a consequence have ARMA model 
parameters different from the rest.  

Groups or clusters of time series can therefore be created by 
clustering the parameters of the ARMA models of a particular 
complexity. Through this process of clustering it would be 
possible to further refine the grouping at each level of 
complexity and also help identify outliers [4]. 

While large groups of time series that exhibit similar 
behavior with respect to power consumption patterns would 
enable the utility to create incentives to suit each segment of the 
market, outliers may provide insights in to unusual power 
consumption entities or fraudulent activity.   

The incentive offered can take the form of a group discount 
applied to the entities of each cluster taking in to account the 
total amount of energy redistribution desired and the price 
elasticity of demand. 
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