

Annual Conference 2017 - IET- Sri Lanka

63

Efficient and Platform Independent CLI Tool

for API Migration
Anuradha Jayakody1, A.K.A. Perera2, G. L. A. K. N. Perera3, V. P. Wijayaweera4, M. A. M. Asbar 5

Sri Lanka Institute of Information Technology,Malabe ,Sri Lanka.
1anuradha.j@sliit.lk, 2akayeshmantha@gmail.com, 3kaveeperera@gmail.com,

4prabhavi313@gmail.com,5asbar.crate@gmail.com

 Abstract—Development organizations maintain

separate environments for development, quality

assurance and production etc. These environments

execute independently and have their own deployment

and own methods of traffic controlling that are handled

locally. In such a process artefact allowed to be created

only at development environment, tested in QA

environment and then would promote to the production

environment for promotion. In a API managing product

company when moving API management products from

one environment to another, all the created APIs need to

migrate across different environments to save the

developer time and effort at various environments. In

order to achieve accurate and efficient migration,

artefacts should be portable and transferable to any new

environment without any major post migration changes

and additional effort.

In this paper, we present a more powerful, efficient and

generalized CLI tool that can be used by any REST based

API managing applications to perform API migration in

a more precise manner. We analyzed the current

migration techniques use by trending API Management

products and identified the major sieve point that needed

to be addressed. Taking those faults n to consideration

we identified the appropriate mechanism to migrate

APIs across different environments.

Keywords—API migration, REST API, CLI tool,

platform independence

I. INTRODUCTION

API management is the process managing activities

related to API creating, publishing, monitoring and life

cycle management of the APIs. There are several

commercially available as well as open source

products standardize this management activity. Before

such a product been released in-to the market, it

traverses through different environments in the

organization as Dev, QA to verify the product is ready

to release. While the product been proceeding at

various environments, all the APIs created in one

environment should be passed in-to another to

examine the expected functionality uniquely across

several environments. This can save the developer’s

time in recreating APIs in new environment as well.

Migration of API comprises of two key processors as

exporting and importing. Exporting refers to moving

of APIs from one environment to another and import

refers to receiving APIs in-to a new destination

environment. Export of APIs involves in retrieving all

the API resources including API definitions, swagger

definitions, thumbnails, WSDLs and documentations

to another environment. During the process of API

import, should be able to rebuild the API using the

received API resources.

This paper organized around presenting our product,

API migration tool which can perform API migration

on behalf of the excessive manual work. Remainder of

the paper organized as follows: the next section will

point out the drawbacks we identified in current

existing migration mechanisms. Then we will discuss

about our product and its functionality. In the

following section, we will list our findings. Finally, we

conclude with the contribution of this work.

II. BACKGROUND

In order to test the API manager product during each

stage of pre- marketing process consistent background

environments needed to be maintained. Therefore,

developers try to re- create these APIs in a new

environment. When there’s no any clear defined

mechanism to export and import the APIs created in

the past environments, Developers has to set up and

publish these APIs in the new environment manually.

Manual creation of APIs causes several identified

issues as below [1].

Annual Conference 2017 - IET- Sri Lanka

64

Additional developer effort requires in recreating

the same API in different environments. Creating an

API with minimal features in single given

environment cost average of 2 minutes. Number of

such APIs are created in the process of developing an

API management products as WSO2 API manager,

Apigee etc. re- creating these APIs in several other

environments is a wastage of developer productive

time.

Extra time spends on recreating APIs will drag the

test schedules and thereby extend the final release days

of the product. Further, it is a waste of productive time

that can be used in any feature development tasks.

Loss of actual functionality and features. Even

though the developers somehow manage to create the

APIs in the new environments, some of the

functionalities and the features need to be tested can

be missed due to the lack of knowledge in building a

full functional API as known by the individuals of the

developing environment.

As a solution to address above mentioned issues APIs

created in the developer environment needed to be a

bundle and transfer to each environment. Only 39% of

the total API managing products in the market have

defined a mechanism to copy and migrate APIs across

different environments. These API managing products

have defined different approaches to perform API

migrations. Still, some drawbacks have not been

addressed as a whole in any of those migration

mechanisms. Following are few such dominant

drawbacks that reveal after the market research and the

literature survey on current API import/ export

processors [10].

Platform dependency. Most of the API migration

mechanisms, migration tools are heavily relying on the

built-in platform technology and cannot be accessed

via other API managing products. This is mainly due

to the tight coupling between tool’s functionality and

the programming language used in building the tool

[2].

Delegation of major key security functions to third

parties. Most of the currents migration tools rely on

third party integrations to perform security

functionalities directly on behalf on them. The trust

relationship between the third-party application and

the operating application is the foundation of this

bond. APIs are proprietary properties. Therefore,

security becomes a key factor that needs to address in

advance. Sometimes this trust relationship can be

broken and application can be open to intruders,

therefore in order to withstand this circumvent

alternative security mechanisms or stronger

authentication techniques should be integrated into the

tool [3].

Individual components should be deployed

separately. Single API consist of a number of

components as API definitions, swagger definitions,

API thumbnails, documentation, WSDL and any

migration policy sequences. In most of the migration

tools each of these components needed to be deployed

separately during the process of importing API to a

new environment. This has a considerable effect on the

performance of the migration process. In the process

of bulk import and export this manual work increase

in multiple times as per to a single API import and

export. Ultimately, it’s a waste of productive

developer effort and time.

File exchange through third party applications. In

the current process of exporting followed by few

available API managing products, created APIs can be

compressed in to .zip or into any other portable version

and these archives been sent through a third-party

software application like email, skype, google plus or

using any other file sharing service. However, this

procedure has open passage to intruder attack risks. It

is better to handle the API migration through docker

files which will be a perfect solution for unauthorized

access via external parties.

Useful bandwidth wastage. When comes to the API

management based on REST API implementations,

Retrieving API’s resources from data sources perform

number of REST API invocations and same when

storing components in-to the data sources of the

destination environment. A number of REST API calls

moving back and forth reducing the utilizable

bandwidth allocated for the entire process.

Considering above facts, its showcase that there’s

unfilled requirement of a more explicit tooling support

for the domain of API migration. The purpose of this

Annual Conference 2017 - IET- Sri Lanka

65

paper is to forward a preferable solution to the API

migration process addressing above mentioned

limitations.

III. METHODOLOGY

The objective of the project is to introduce an efficient

and platform independent solution for migration of

APIs across different environments. This tool is a

generalized CLI tool, build for API migration which

will facilitate the smooth and powerful transferring of

APIs across different environments in the domain of

API management. The CLI tool will minimize the

effort and time in re-creating APIs in when product

moves between environments as Dev to QA or QA to

production.

Tool is a generalized migrating tool that can be used

in different API management application by different

vendors. Another main benefit of the proposed tool is,

the tool will be a platform independent tool which can

be used in different operating systems.

Tool comprised of several major key functionalities

including built-in authentication mechanism, export of

single and multiple APIs, import of APIs, API

deployment in the google cloud using docker and

kubernetes.

Security. The CLI tool equipped with a built-in

authentication mechanism to ensure a strong secure

authentication process. Therefore, it has minimized

the dependencies with external third-party

authentication mechanisms.

Encapsulated authentication operations are undertaken

to prevent any unnecessary external intruder actions.

Figure 1 provides the detail flow of the authentication

mechanism followed by the CLI tool. User can log in

to the tool using a valid username and a password. This

user credentials decide about the environments that the

user can access into. Valid user name and a password

then concatenated and encrypted and sent to the basic

token endpoint. Basic token endpoint will issue a basic

token with expiration period. This encrypted basic

token can then be sent in to an OAuth 2.0 endpoint

which will return a valid OAuth 2.0 token. OAuth

token is use by the CLI tool to call the REST API

endpoints to retrieve the resource components of the

APIs. These components can then can be bundled and

sent to the next environment.

Export. Retrieving all the components related to a API

as API definition, swagger definition, documentation

and bundle them up to a transportable file refers to as

API export. The figure 2 illustrates the process

followed by the CLI tool perform above functionality.

User can execute the tool with the credentials of the

API details. API details can either be the UUID of the

API or combination of API name, version and the

owner of the API. Once the request been sent, CLI tool

search for the API in API store. If it is a valid API CLI

tool will retrieve all the components related to the API

separately from the persistent data source and write in

to a folder. Component belongs to API includes API

definition, swagger definition, thumbnail images,

mediation policies, documentations and any WSDLs if

available. Finally created API been compressed and

convert into a transportable file, which can be used in

the API import process in the receiving end.

Figure 1: The Authentication mechanism of the CLI tool

Annual Conference 2017 - IET- Sri Lanka

66

Figure 2: The work flow on exporting an API.

Import. In API import a publisher will receive a

compressed version of an API or a collection of APIs.

Publisher can create those into the new environment

by executing the CLI tool. Figure 3 illustrates how the

API import preform inside the CLI tool.

Figure 3: The work flow of the API import.

User can run the CLI tool with the valid credentials

and path to the imported API file. Tool will validate

the user and path to the imported file. If valid, CLI tool

will extract all the content inside the imported file to a

temporary location. There after tool execute number of

REST API invocations to re-store the component in

the persistent data source of the new environment.

After storing data tool can publish the API/APIs in the

new environment.

Deployment of API files using docker and

kubernetes. The main communication mechanism

used in REST APIs are HTTP calls, there can be many

numbers of HTTP calls as per the user’s requests. It

will be affect the performance of the product while

wasting a certain amount of network bandwidth. As a

solution, introducing a way to minimize the number of

HTTP calls to achieve the use of a minimal number of

resources per requests to improve the performance and

accuracy of the tool. Moreover, including Docker in

the product to make more efficient service since

Docker has many potential advantages in the fields of

usability, performance and security against traditional

virtualization [4],[8]. Base Docker image from the

Docker hub will be taken through the CLI tool and

then push the API to the retrieved Docker image. After

that, it can be pushed directly to the Docker hub again.

Another production environment can access the

pushed Docker image with the API in their

environment to execute the tasks. Therefore, Docker

makes easier to deploy CLI tool in several isolated

environments [6], [7]. Always there may minor

variation between development environments; unless

having own repository environment. By using Docker,

fulfil that gap by keeping consistent environment

because Docker containers are configured to keep

dependencies internally.

Furthermore, involving kubernetes in the tool will also

benefit the user, since it can handle complex scenarios

on the deployment and to give users the ability to

access their API’s with more efficient and scalable

approach while providing zero downtime

deployments, continuous deployment and high

stability of deployed services [5],[9]. Therefore, the

purpose of Kubernetes is to make it easier to organize

and schedule the application across a fleet of

machines. At a high level, it is an operating system for

the user’s cluster. It handles what specific machine in

the datacenter each application runs on.

The configurations needed to be done at the user end

will be minimized by the above-mentioned techniques

by enhancing the automation functions which will be

included in the proposed tool. The final implemented

CLI tool will mainly achieve API migration in

Annual Conference 2017 - IET- Sri Lanka

67

different environments, platform independent, high

efficiency, provide powerful built-in authentication

mechanism and minimalist usage of the available

bandwidth while minimizing the identified drawbacks

and improve the performance of current migration

tools in API management products.

IV. CONCLUSION

API migration is becoming an essential functionality

supported by API managing products which will allow

developers to migrate the created APIs in one

development environment to another as well for the

API publishers to exchange their created APIs with

other API publishers. Current mechanisms provided

by several API management products have identified

problems which are not addressed yet. Therefore, a

requirement for a powerful, platform independent and

efficient CLI tooling supporting for this domain is still

at a growing stage. We presented new CLI tool which

could overcome those identified issues in current

existing tools and have a capability to address the

performance issues currently undergoing.

ACKNOWLEDGMENT

THIS RESEARCH WORK SUPPORTED BY SRI LANKA

INSTITUTE OF INFORMATION TECHNOLOGY.

REFERENCES

[1] Alexie Balaganski, “API Security Management”,

KuppingerCole Report No : 70958, LEADERSHIP

COMPASS pp 20-27, July 2015.

[2] Victor Winter, Jonathan Guerrero, Carl Reinke, James Perry,”

Java Core API Migration: Challenges and Techniques”, in

PPPJ 2013 submission, 14 May 2013.

[3] Trevor Perrin, Logan Bruns, Jahan Moreh, Terry Olki,

“Delegated Cryptography, Online Trusted Third Parties, and

PKI”, in 1st Annual PKI Research Workshop - April

2002.Available:

http://trevp.net/delegatedCrypto/delegatedCrypto.html. [25

May 2017]

[4] Tuomas Vase, “ADVANTAGES OF DOCKER”, University

of Jyväskylä, 2015, 24 p. [Online] Available:

https://jyx.jyu.fi/dspace/bitstream/handle/123456789/48029/

URN%3ANBN%3Afi%3Ajyu-

201512093942.pdf?sequence=1, [May.25 2017]

[5] Jean-Mathieu Saponaro. (2017, May 19). “Kubernetes”.

[Online]. Available: http://blog.kubernetes.io/, [May.25.2017]

[6] Docker Doc,“Overview of Docker

Hub”.Internet:https://docs.docker.com/docker-hub/

[May.25,2017]

[7] Muhammad Arul.” How to create Docker Images with a

Dockerfile”.Internet:.https://www.howtoforge.com/tutorial/h

ow-to-create-docker-images-with-dockerfile/ [May.25,2017]

[8] IOD Community.” 5 Key Benefits of Docker: CI, Version

Control, Portability, Isolation and Security”. Internet:

http://www.iamondemand.com/blog/5-key-benefits-of-

docker-ci-version-control-portability-isolation-and-security/

.APR.24, 2015[May.25,2017]

[9] Wikipedia. “Kubernetes”. Internet:

https://en.wikipedia.org/wiki/Kubernetes,Mar.11, 2017.

[May.25,2017]

[10] Alexie Balaganski. (2015, July). “Leadership compass”. API

Security Management. [Online]. pp 20-27. Available: [May.27

2017]

